The experimental source code of Paper: Time Series Forecasting using GRU Neural Network with Multi-lag after Decomposition, ICONIP 2017. paper, HomePage
- python 3.6.3 (Anaconda)
- keras 2.1.2
- tensorflow-gpu 1.13.1
- sklearn 0.19.1
- numpy 1.15.4
- pandas 0.23.4
- statsmodels 0.8.0
- matplotlib 2.1.0
- LSTM
- GRU
- RNN
- MLP
- SVR
- ARIMA
- time series decomposition
- data
- models
- decompose.py: time series decomposition
- MLP.py: MLP network
- RNNS.py: RNN faimily network, including RNN, LSTM, GRU
- SVR.py: SVR model
- naive_MLP_forecasting.py
- naive_RNN_forecasting.py
- naive_SVR_forecasting.py
- decompose_MLP_forecasting.py
- decompose_RNN_forecasting.py
- decompose_SVR_forecasting.py
- ARIMA.py (to do)
- util.py: load data, pre-processe time series, including multi-lag sampling
- eval.py: calculate the metrics
- subseries_plot.py: plot figure of time series decomposition