Skip to content

使用MTCNN进行人脸识别,FaceNet进行特征提取的人脸识别系统

License

Notifications You must be signed in to change notification settings

zhongxinyun/FaceRecognition-System-Pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FaceRecognition-System-Pytorch

简介

本项目为一个完整的人脸识别系统,该系统提供了如下功能:

  1. 人脸识别
  2. 人脸特征提取
  3. 人脸对比

快速使用

环境

pip install -r requirement.txt

下载权重

链接: https://pan.baidu.com/s/1Yc6X4M9kX-c7hqviXjd6ig?pwd=ei2r

将权重放到 /face/facenet/weights 文件夹下

运行 example.py

算法介绍

人脸识别算法使用了MTCNN算法,人脸特征提取算法使用了FaceNet算法;

MTCNN算法采用级联CNN结构,通过多任务学习,同时完成了两个任务——人脸检测和人脸对齐,输出人脸的Bounding Box以及人脸的关键点(眼睛、鼻子、嘴)位置

FaceNet算法直接学习图像到欧式空间上点的映射,两张图像所对应的特征的欧式空间上的点的距离直接对应着两个图像是否相似

API 接口介绍

example.py 中给出了每个接口的例子

fs = FaceSystem()
# 预测人脸的例子
image = Image.open("./images/1.jpg")
result = fs.face_detect(image)
fs.show_face_boxes(image, result)

image-20220426100346839

# 打开摄像头进行识别
fs.video_face_reg()
# 将人脸切割保存
fs.save_faces(image, result)

image-20220426111924754

# 提取人脸特征
face1 = Image.open('./images/face_0.jpg')
feature1 = fs.get_face_feature(face1)
face2 = Image.open('./images/face_1.jpg')
feature2 = fs.get_face_feature(face1)
print(feature1.shape)
print(feature2.shape)
(1, 512)
(1, 512)
# 人脸特征对比
dist = fs.feature_compare(feature1, feature2)
dist2 = fs.feature_compare(feature1, feature1)
print(dist)
print(dist2)
0.8376869
0.0

References

[1] David Sandberg's facenet repo: https://github.com/davidsandberg/facenet

[2] K. Zhang, Z. Zhang, Z. Li and Y. Qiao. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, 2016. PDF

[3] F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, arXiv:1503.03832, 2015. PDF

[4] polarisZhao's mtcnn-pytorch repo: https://github.com/polarisZhao/mtcnn-pytorch

About

使用MTCNN进行人脸识别,FaceNet进行特征提取的人脸识别系统

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%