- CentOS 7
- Python 3.6.5
- Python-tkinter
- Deploy the environment.
pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
- Download source codes, run command:
git clone https://github.com/zhyantao/image-segmentation.git
- Download TrainData.tar.gz to the directory image-segmentation/.
- Change directory:
cd image-segmentation/src/
- Make original dataset, run command:
sh make_dataset.sh
- Data preprocess, run command:
python data_preprocess.py
- DIY your dataset, open
DIY_dataset.sh
and modify the number of images you wanna to train and valid, then run command:
sh DIY_dataset.sh
python train.py
python test.py
python label_visualization.py
- U-Net: Convolutional Networks for Biomedical Image Segmentation
- Deep-Learning Based, Automated Segmentation of Macular Edema in Optical Coherence Tomography
- SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
- Relationship Between a Systemic Inflammatory Marker, Plaque Inflammation, and Plaque Characteristics Determined by Intravascular Optical Coherence Tomography
- preddy5/segnet
For more details, see nohup.out
tensorboard --logdir=../logs/