The repository mainly records how to use VIT to code the airfoil geometry and how to use the encoded information to reconstruct the flow field of the airfoil. 🖐
More details about this work can be found from our paper:
Fast aerodynamics prediction of laminar airfoils based on deep attention network
1、timm_ V2.py is implemented using the timm visual algorithm function library. The traditional implementation method can refer to VIT_author.py file.
pytorch-image-models references:
author_home_page:https://github.com/rwightman
pytorch-image-models open source code:https://github.com/rwightman/pytorch-image-models
Zhi hu:https://zhuanlan.zhihu.com/p/350837279
2、Visual Transformer Code Reference for Attention Visualization:https://github.com/zuokuijun/Transformer-Explainability
3、 VIT_ Airfoil_ Encoder is a Pycharm engineering file that uses Transformer to encode geometric parameters for UIUC airfoil database
-
cd VIT_Airfoil_Encoder
-
run
python plot_airfoil.py
generate airfoil images. -
run
python get_gray_images.py
generate airfoil gray images -
run
python get_airfoil_map.py
generate airfoil three channel airfoil heat-map images -
run
python vit_explain.py
get airfoil geometry encoding information
-
cd VIT_flow_field_prediction
-
run
train.py
file to train DAN -
run
mlp_test.py
to get DAN prediction resultsTips: The test model and test data can be found in [vitAirfoilEncoder](vitAirfoilEncoder)
@article{zuo2023fast,
title={Fast aerodynamics prediction of laminar airfoils based on deep attention network},
author={Zuo, Kuijun and Ye, Zhengyin and Zhang, Weiwei and Yuan, Xianxu and Zhu, Linyang},
journal={Physics of Fluids},
volume={35},
number={3},
year={2023},
publisher={AIP Publishing}
}