-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhashGNN_ml.py
executable file
·493 lines (407 loc) · 17.2 KB
/
hashGNN_ml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from typing import Any
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
from minigpt4.models.rec_model import MatrixFactorization
from torch.utils.data.dataset import Dataset
from torch.utils.data.dataloader import DataLoader
import pandas as pd
import numpy as np
import torch.optim
from sklearn.metrics import roc_auc_score
import torch.nn as nn
import torch.nn.functional as F
import omegaconf
import random
import os
# os.environ["CUDA_VISIBLE_DEVICES"]='2'
from minigpt4.tasks import base_task
import time
import numpy as np
# import ray
class my_sign(torch.autograd.Function):
@staticmethod
def forward(ctx, inputs):
re = torch.ones_like(inputs)
re[inputs<0]= -1.0
return re
# return (ctx>0).float()
@staticmethod
def backward(ctx, grad_outputs):
return grad_outputs
class binarize(nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self,x):
re = my_sign.apply(x)
return re
class hashGNN(nn.Module):
def __init__(self, config, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.rec_model = MatrixFactorization(config=config)
self.emb_dim = config.embedding_size
self.proj_u = nn.Linear(self.emb_dim,self.emb_dim)
self.proj_i = nn.Linear(self.emb_dim,self.emb_dim)
self.act = nn.Tanh()
self.binarize = binarize()
def beta_init(self,beta_step=0.02):
self.beta = 0.0
self.beta_step=beta_step
self.beta_updatable = True
def update_beta(self):
if self.beta_updatable and self.beta < 1.01:
self.beta += self.beta_step
else:
self.beta_updatable = False
self.beta = 1.0
def computer(self):
u_emb = self.rec_model.user_embedding.weight
i_emb = self.rec_model.item_embedding.weight
u_z = self.act(self.proj_u(u_emb))
i_z = self.act(self.proj_i(i_emb))
self.hash_u = self.binarize(u_z)
self.hash_i = self.binarize(i_z)
def user_encoder(self,idx):
return self.hash_u[idx]
def item_encoder(self,idx):
return self.hash_u[idx]
def forward(self,user,item):
u_emb = self.rec_model.user_encoder(user)
i_emb = self.rec_model.item_encoder(item)
z_u = self.act(self.proj_u(u_emb))
z_i = self.act(self.proj_i(i_emb))
h_u = self.binarize(z_u)
h_i = self.binarize(z_i)
h_u_shape = h_u.shape
# selector = self.beta < torch.rand_like(h_u)
# o_u = torch.where(selector, z_u, h_u)
# o_i = torch.where(selector, z_i, h_i)
if self.training:
# selector = self.beta < torch.rand([np.prod(h_u_shape[:-1])])
# selector = selector.reshape(-1,1).repeat(1,h_u_shape[-1]).cuda()
selector = self.beta < torch.rand_like(h_u)
o_u = torch.where(selector, z_u, h_u)
o_i = torch.where(selector, z_i, h_i)
else:
o_u = h_u
o_i = h_i
print("o_u:",o_u)
matching = torch.mul(o_u,o_i).sum(dim=-1)
return matching
def uAUC_me(user, predict, label):
if not isinstance(predict,np.ndarray):
predict = np.array(predict)
if not isinstance(label,np.ndarray):
label = np.array(label)
predict = predict.squeeze()
label = label.squeeze()
start_time = time.time()
u, inverse, counts = np.unique(user,return_inverse=True,return_counts=True) # sort in increasing
index = np.argsort(inverse)
candidates_dict = {}
k = 0
total_num = 0
only_one_interaction = 0
computed_u = []
for u_i in u:
start_id,end_id = total_num, total_num+counts[k]
u_i_counts = counts[k]
index_ui = index[start_id:end_id]
if u_i_counts ==1:
only_one_interaction += 1
total_num += counts[k]
k += 1
continue
# print(index_ui, predict.shape)
candidates_dict[u_i] = [predict[index_ui], label[index_ui]]
total_num += counts[k]
k+=1
print("only one interaction users:",only_one_interaction)
auc=[]
only_one_class = 0
for ui,pre_and_true in candidates_dict.items():
pre_i,label_i = pre_and_true
try:
ui_auc = roc_auc_score(label_i,pre_i)
auc.append(ui_auc)
computed_u.append(ui)
except:
only_one_class += 1
# print("only one class")
auc_for_user = np.array(auc)
print("computed user:", auc_for_user.shape[0], "can not users:", only_one_class)
uauc = auc_for_user.mean()
print("uauc for validation Cost:", time.time()-start_time,'uauc:', uauc)
return uauc, computed_u, auc_for_user
class early_stoper(object):
def __init__(self,ref_metric='valid_auc', incerase =True,patience=20) -> None:
self.ref_metric = ref_metric
self.best_metric = None
self.increase = incerase
self.reach_count = 0
self.patience= patience
# self.metrics = None
def _registry(self,metrics):
self.best_metric = metrics
def update(self, metrics):
if self.best_metric is None:
self._registry(metrics)
return True
else:
if self.increase and metrics[self.ref_metric] > self.best_metric[self.ref_metric]:
self.best_metric = metrics
self.reach_count = 0
return True
elif not self.increase and metrics[self.ref_metric] < self.best_metric[self.ref_metric]:
self.best_metric = metrics
self.reach_count = 0
return True
else:
self.reach_count += 1
return False
def is_stop(self):
if self.reach_count>=self.patience:
return True
else:
return False
# set random seed
def run_a_trail(train_config,log_file=None, save_mode=False,save_file=None,need_train=True,warm_or_cold=None,need_uauc=False):
seed=2023
random.seed(seed)
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# load dataset
data_dir = "/data/datasets/ml-1m/"
print("data dir:", data_dir)
train_data = pd.read_pickle(data_dir+"train_ood2.pkl")[['uid','iid','label']].values
valid_data = pd.read_pickle(data_dir+"valid_ood2.pkl")[['uid','iid','label']].values
test_data = pd.read_pickle(data_dir+"test_ood2.pkl")[['uid','iid','label']].values
user_num = max(train_data[:,0].max(), valid_data[:,0].max(), test_data[:,0].max()) + 1
item_num = max(train_data[:,1].max(), valid_data[:,1].max(), test_data[:,1].max()) + 1
if warm_or_cold is not None:
if warm_or_cold == 'warm':
test_data = pd.read_pickle(data_dir+"test_warm_cold_ood2.pkl")[['uid','iid','label', 'warm']]
test_data = test_data[test_data['warm'].isin([1])][['uid','iid','label']].values
print("warm data size:", test_data.shape[0])
# pass
else:
test_data = pd.read_pickle(data_dir+"test_warm_cold_ood2.pkl")[['uid','iid','label', 'cold']]
test_data = test_data[test_data['cold'].isin([1])][['uid','iid','label']].values
print("cold data size:", test_data.shape[0])
# pass
print("user nums:", user_num, "item nums:", item_num)
mf_config={
"user_num": int(user_num),
"item_num": int(item_num),
"embedding_size": int(train_config['embedding_size'])
}
mf_config = omegaconf.OmegaConf.create(mf_config)
train_data_loader = DataLoader(train_data, batch_size = train_config['batch_size'], shuffle=True)
valid_data_loader = DataLoader(valid_data, batch_size = train_config['batch_size'], shuffle=False)
test_data_loader = DataLoader(test_data, batch_size = train_config['batch_size'], shuffle=False)
model = hashGNN(mf_config).cuda()
opt = torch.optim.Adam(model.parameters(),lr=train_config['lr'],weight_decay=train_config['wd'])
early_stop = early_stoper(ref_metric='valid_auc',incerase=True,patience=train_config['patience'])
# trainig part
criterion = nn.BCEWithLogitsLoss()
if not need_train:
model.load_state_dict(torch.load(save_file))
model.eval()
pre=[]
label = []
users = []
for batch_id,batch_data in enumerate(valid_data_loader):
batch_data = batch_data.cuda()
ui_matching = model(batch_data[:,0].long(),batch_data[:,1].long())
users.extend(batch_data[:,0].cpu().numpy())
pre.extend(ui_matching.detach().cpu().numpy())
label.extend(batch_data[:,-1].cpu().numpy())
valid_auc = roc_auc_score(label,pre)
valid_uauc = 0
if need_uauc:
valid_uauc, _, _ = uAUC_me(users, pre, label)
label = np.array(label)
pre = np.array(pre)
thre = 0.1
pre[pre>=thre] = 1
pre[pre<thre] =0
val_acc = (label==pre).mean()
pre=[]
label = []
users = []
for batch_id,batch_data in enumerate(test_data_loader):
batch_data = batch_data.cuda()
ui_matching = model(batch_data[:,0].long(),batch_data[:,1].long())
pre.extend(ui_matching.detach().cpu().numpy())
label.extend(batch_data[:,-1].cpu().numpy())
users.extend(batch_data[:,0].cpu().numpy())
test_auc = roc_auc_score(label,pre)
test_uauc = 0
if need_uauc:
test_uauc, _, _ = uAUC_me(users, pre, label)
print("valid_auc:{}, valid_uauc:{}, test_auc:{}, test_uauc:{}, acc: {}".format(valid_auc, valid_uauc, test_auc, test_uauc, val_acc))
return
model.beta_init(train_config['beta'])
for epoch in range(train_config['epoch']):
print("beta:",model.beta)
model.train()
for bacth_id, batch_data in enumerate(train_data_loader):
batch_data = batch_data.cuda()
ui_matching = model(batch_data[:,0].long(),batch_data[:,1].long())
loss = criterion(ui_matching, batch_data[:,-1].float())
opt.zero_grad()
loss.backward()
opt.step()
if epoch% train_config['eval_epoch']==0:
model.eval()
pre=[]
label = []
users = []
for batch_id,batch_data in enumerate(valid_data_loader):
batch_data = batch_data.cuda()
ui_matching = model(batch_data[:,0].long(),batch_data[:,1].long())
users.extend(batch_data[:,0].cpu().numpy())
pre.extend(ui_matching.detach().cpu().numpy())
label.extend(batch_data[:,-1].cpu().numpy())
valid_auc = roc_auc_score(label,pre)
valid_uauc = 0
if need_uauc:
valid_uauc, _, _ = uAUC_me(users, pre, label)
pre=[]
label = []
users = []
for batch_id,batch_data in enumerate(test_data_loader):
batch_data = batch_data.cuda()
ui_matching = model(batch_data[:,0].long(),batch_data[:,1].long())
users.extend(batch_data[:,0].cpu().numpy())
pre.extend(ui_matching.detach().cpu().numpy())
label.extend(batch_data[:,-1].cpu().numpy())
test_auc = roc_auc_score(label,pre)
test_uauc = 0
if need_uauc:
test_uauc, _, _ = uAUC_me(users, pre, label)
updated = early_stop.update({'valid_auc':valid_auc, 'valid_uauc':valid_uauc,'test_auc':test_auc, 'test_uauc':test_uauc, 'epoch':epoch})
if updated and save_mode:
torch.save(model.state_dict(),save_file)
print("epoch:{}, valid_auc:{}, test_auc:{}, early_count:{}".format(epoch, valid_auc, test_auc, early_stop.reach_count))
if early_stop.is_stop():
print("early stop is reached....!")
# print("best results:", early_stop.best_metric)
break
if epoch>500 and early_stop.best_metric[early_stop.ref_metric] < 0.52:
print("training reaches to 500 epoch but the valid_auc is still less than 0.55")
break
if epoch%2 ==0:
model.update_beta()
print("train_config:", train_config,"\nbest result:",early_stop.best_metric)
if log_file is not None:
print("train_config:", train_config, "best result:", early_stop.best_metric, file=log_file)
log_file.flush()
# if __name__=='__main__':
# # lr_ = [1e-1,1e-2,1e-3]
# lr_=[1e-1]
# dw_ = [1e-2,1e-3,1e-4,1e-5,1e-6,1e-7]
# # embedding_size_ = [32, 64, 128, 156, 512]
# embedding_size_ = [32,64,128,256]
# beta = [0.02, 0.01, 0.005, 0.001]
# try:
# f = open("log/0130_hash_mf_lr"+str(lr_[0])+".log",'rw+')
# except:
# f = open("log/0130_hash_mf_lr"+str(lr_[0])+".log",'w+')
# for lr in lr_:
# for wd in dw_:
# for embedding_size in embedding_size_:
# for b in beta:
# train_config={
# 'lr': lr,
# 'wd': wd,
# 'embedding_size': embedding_size,
# "epoch": 5000,
# "eval_epoch":1,
# "patience":100,
# "batch_size":2048,
# "beta": b
# }
# print(train_config)
# run_a_trail(train_config=train_config, log_file=f, save_mode=False,need_uauc=False)
# f.close()
# {'lr': 0.001, 'wd': 0.0001, 'embedding_size': 256, 'epoch': 5000, 'eval_epoch': 1, 'patience': 100, 'batch_size': 2048},
# {'valid_auc': 0.6760080227104877, 'valid_uauc': 0.6191863368703151, 'test_auc': 0.6482002627476354, 'test_uauc': 0.636100123360848, 'epoch': 465}
# save version....
# if __name__=='__main__':
# # lr_ = [1e-1,1e-2,1e-3]
# lr_=[1e-2] #1e-2
# dw_ = [1e-3]
# # embedding_size_ = [32, 64, 128, 156, 512]
# embedding_size_ = [32]
# # save_path = "/data/LLM/PretrainedModels/mf/"
# save_path = "/data/cf4llm/"
# # try:
# # f = open("rec_mf_search_lr"+str(lr_[0])+".log",'rw+')
# # except:
# # f = open("rec_mf_search_lr"+str(lr_[0])+".log",'w+')
# f=None
# for lr in lr_:
# for wd in dw_:
# for embedding_size in embedding_size_:
# train_config={
# 'lr': lr,
# 'wd': wd,
# 'embedding_size': embedding_size,
# "epoch": 5000,
# "eval_epoch":1,
# "patience":100,
# "batch_size":2048,
# "beta":0.001
# }
# print(train_config)
# save_path += "0130hashGNN-ml-" + str(embedding_size)+ 'lr-'+ str(lr) + "wd"+str(wd) + ".pth"
# # save_path = None
# print("save path: ", save_path)
# run_a_trail(train_config=train_config, log_file=f, save_mode=True,save_file=save_path)
# f.close()
#### /data/LLM/PretrainedModels/mf/best_model_d128.pth
# with prtrain version:
if __name__=='__main__':
# lr_ = [1e-1,1e-2,1e-3]
lr_=[1e-3] #1e-2
dw_ = [1e-4]
# embedding_size_ = [32, 64, 128, 156, 512]
embedding_size_ = [32]
save_path = "/data/LLM/PretrainedModels/mf/"
# try:
# f = open("rec_mf_search_lr"+str(lr_[0])+".log",'rw+')
# except:
# f = open("rec_mf_search_lr"+str(lr_[0])+".log",'w+')
f=None
for lr in lr_:
for wd in dw_:
for embedding_size in embedding_size_:
train_config={
'lr': lr,
'wd': wd,
'embedding_size': embedding_size,
"epoch": 5000,
"eval_epoch":1,
"patience":50,
"batch_size":2048
}
print(train_config)
# save_path = "/data/LLM/PretrainedModels/mf/0912_ml100k_oodv2_best_model_d64lr-0.001wd0.0001.pth"
# save_path = "/data/LLM/PretrainedModels/mf/0912_ml1m_oodv2_best_model_d256lr-0.001wd0.0001.pth"
# save_path = "/data/cf4llm/0130hashGNN-ml-32lr-0.01wd0.001.pth" #"/data/cf4llm/0130hashGNN-ml-128lr-0.001wd0.001.pth"
save_path = "/data1/cf4reclog-cc/hash/0130hashGNN-ml-32lr-0.01wd0.001.pth"
# if os.path.exists(save_path + "0912_ml100k_oodv2_best_model_d" + str(embedding_size)+ 'lr-'+ str(lr) + "wd"+str(wd) + ".pth"):
# save_path += "0912_ml100k_oodv2_best_model_d" + str(embedding_size)+ 'lr-'+ str(lr) + "wd"+str(wd) + ".pth"
# print(save_path)
# else:
# save_path += "best_model_d" + str(embedding_size) + ".pth"
run_a_trail(train_config=train_config, log_file=f, save_mode=False,save_file=save_path,need_train=False,warm_or_cold=None,need_uauc=True)
if f is not None:
f.close()