This repository is constructed based on CoLLM! Read CoLLM "readme.md" to understand the code structure!
** Our trained models can be found at here.**
CUDA_VISIBLE_DEVICES=6,7 WORLD_SIZE=2 nohup torchrun --nproc-per-node 2 --master_port=11139 train_collm_mf_din.py --cfg-path=train_configs/collm_pretrain_mf_ood.yaml > /log.out &
step 1: training without collaborative info.
CUDA_VISIBLE_DEVICES=0,1 WORLD_SIZE=2 nohup torchrun --nproc-per-node 2 --master_port=11139 train_collm_mf_din.py --cfg-path=train_configs/collm_pretrain_mf_ood.yaml > /log.out &
Note: Please download "train_collm_mf_din.py" and collm_pretrain_mf_ood.yaml form CoLLM repository
step 2: training with collaborative info.
CUDA_VISIBLE_DEVICES=0,1 WORLD_SIZE=2 nohup torchrun --nproc-per-node 2 --master_port=11139 train_binllm.py --cfg-path=train_configs/hash_CF_ml.yaml > /log.out &
If you're using CoLLM code in your research or applications, please cite our papers:
@inproceedings{zhang-etal-2024-text,
title = "Text-like Encoding of Collaborative Information in Large Language Models for Recommendation",
author = "Zhang, Yang and Bao, Keqin and Yan, Ming and Wang, Wenjie and Feng, Fuli and He, Xiangnan",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2024",
url = "https://aclanthology.org/2024.acl-long.497",
pages = "9181--9191"
}
@article{zhang2023collm,
title={CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation},
author={Zhang, Yang and Feng, Fuli and Zhang, Jizhi and Bao, Keqin and Wang, Qifan and He, Xiangnan},
journal={arXiv preprint arXiv:2310.19488},
year={2023}
}
You may also need to cite the MiniGPT-4 paper.