-
Notifications
You must be signed in to change notification settings - Fork 0
Module : MAD filtering
LehmannN edited this page Jun 13, 2018
·
3 revisions
This module removes bad quality cells from the dataset based on median absolute deviation (MAD).
-
Internal name : MAD-filtering
-
Avalaible : local mode
-
Input Ports :
- matrix : initial count matrix (tsv)
- cells : initial cells metadata (tsv)
- genes : genes metadata (tsv)
-
Output Ports :
- completcellsoutput : initial cells metadata (tsv) (completed with quality metrics)
- matrixoutput : filtered count matrix (tsv)
- cellsoutput : filtered cells metadata (tsv)
-
Optional parameters :
Parameter | Type | Description | Default Value |
---|---|---|---|
detection_threshold | integer | Minimal number of reads to consider a feature as detected | 10 |
expression_option | string | Type of feature to detect (Endogenous, Nuclear or All) | Endogenous |
n_Mad | integer | Maximal number of median absolute deviations for number of reads and number of detected features | 5 |
direction | string | Direction to consider for MAD filtering : lower, upper or both | both |
groups | string | Name of the column for cell grouping, if cells are in one group value is Null | Null |
prop_mt | float | Maximum proportion of reads mapping to mitochondrial features | 0.1 |
prop_sp | float | Maximum proportion of reads mapping to exogenous features | 0.5 |
nb_filters | int | Minimum number of failures triggering removal | 1 |
- Configuration example
<step id="QC" skip="false">
<module>MAD-filtering</module>
<parameters>
<parameter>
<name>n_Mad</name>
<value>3</value>
</parameter>
<parameter>
<name>direction</name>
<value>lower</value>
</parameter>
<parameter>
<name>groups</name>
<value>CellType</value>
</parameter>
</parameters>
</step>
After cleaning the data, the module produces two scatter plot, showing all cells in term of number of feature (y-axis) and number of reads (x-axis).
The first one shows all cells. The red ones are those being eliminated.
The second one shows the remaining cells after filtering. At the end of the filtering, cells should behave like a mixture of gaussians, i.e. you can wrap them in a given number of ellipses.