Skip to content

Commit

Permalink
Characteristic subgroups (#863)
Browse files Browse the repository at this point in the history
This PR adds a definition of characteristic subgroups to the library. I
proof of the expected properties is expected to follow in a later PR
  • Loading branch information
EgbertRijke authored Oct 19, 2023
1 parent e310e00 commit 87ae36d
Show file tree
Hide file tree
Showing 27 changed files with 229 additions and 100 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -353,7 +353,7 @@ module _

iso-ab-iso-ab-Commutative-Ring :
iso-ab-Commutative-Ring
type-iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B)
iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B)
iso-ab-iso-ab-Commutative-Ring =
iso-ab-iso-ab-Ring
( ring-Commutative-Ring A)
Expand All @@ -376,7 +376,7 @@ module _

iso-ab-iso-Commutative-Ring :
iso-Commutative-Ring A B
type-iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B)
iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B)
iso-ab-iso-Commutative-Ring =
iso-ab-iso-Ring
( ring-Commutative-Ring A)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ transported ring structure.
```agda
module _
{l1 l2 : Level} (A : Commutative-Ring l1) (B : Ab l2)
(f : type-iso-Ab (ab-Commutative-Ring A) B)
(f : iso-Ab (ab-Commutative-Ring A) B)
where

ring-transport-commutative-ring-structure-iso-Ab : Ring l2
Expand Down
2 changes: 1 addition & 1 deletion src/finite-group-theory/finite-type-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ module _
( id)))

iso-loop-group-fin-UU-Fin-Group :
type-iso-Group
iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l n))
( loop-group-Set (raise-Set l (Fin-Set n)))
pr1 iso-loop-group-fin-UU-Fin-Group =
Expand Down
2 changes: 1 addition & 1 deletion src/finite-group-theory/groups-of-order-2.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ iso-Group-of-Order-2 :
{l1 l2 : Level} (G : Group-of-Order-2 l1) (H : Group-of-Order-2 l2)
UU (l1 ⊔ l2)
iso-Group-of-Order-2 G H =
type-iso-Group (group-Group-of-Order-2 G) (group-Group-of-Order-2 H)
iso-Group (group-Group-of-Order-2 G) (group-Group-of-Order-2 H)

module _
{l : Level} (G : Group-of-Order-2 l)
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/images-subtypes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A B)
where

subtype-im-subtype :
im-subtype :
{l3 : Level} subtype l3 A subtype (l1 ⊔ l2 ⊔ l3) B
subtype-im-subtype S y = subtype-im (f ∘ inclusion-subtype S) y
im-subtype S y = subtype-im (f ∘ inclusion-subtype S) y
```
1 change: 1 addition & 0 deletions src/group-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ open import group-theory.central-elements-groups public
open import group-theory.central-elements-monoids public
open import group-theory.central-elements-semigroups public
open import group-theory.centralizer-subgroups public
open import group-theory.characteristic-subgroups public
open import group-theory.commutative-monoids public
open import group-theory.commutator-subgroups public
open import group-theory.commutators-of-elements-groups public
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/category-of-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ is-large-category-Group G =
( is-contr-total-iso-Group G)
( iso-eq-Group G)

eq-iso-Group : {l : Level} (G H : Group l) type-iso-Group G H Id G H
eq-iso-Group : {l : Level} (G H : Group l) iso-Group G H Id G H
eq-iso-Group G H = map-inv-is-equiv (is-large-category-Group G H)

Group-Large-Category : Large-Category lsuc (_⊔_)
Expand Down
4 changes: 2 additions & 2 deletions src/group-theory/category-of-semigroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,12 @@ is-large-category-Semigroup G =
( iso-eq-Semigroup G)

extensionality-Semigroup :
{l : Level} (G H : Semigroup l) Id G H ≃ type-iso-Semigroup G H
{l : Level} (G H : Semigroup l) Id G H ≃ iso-Semigroup G H
pr1 (extensionality-Semigroup G H) = iso-eq-Semigroup G H
pr2 (extensionality-Semigroup G H) = is-large-category-Semigroup G H

eq-iso-Semigroup :
{l : Level} (G H : Semigroup l) type-iso-Semigroup G H Id G H
{l : Level} (G H : Semigroup l) iso-Semigroup G H Id G H
eq-iso-Semigroup G H = map-inv-is-equiv (is-large-category-Semigroup G H)

Semigroup-Large-Category : Large-Category lsuc (_⊔_)
Expand Down
75 changes: 75 additions & 0 deletions src/group-theory/characteristic-subgroups.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Characteristic subgroups

```agda
module group-theory.characteristic-subgroups where
```

<details><summary>Imports</summary>

```agda
open import foundation.propositions
open import foundation.universe-levels

open import group-theory.groups
open import group-theory.images-of-group-homomorphisms
open import group-theory.isomorphisms-groups
open import group-theory.subgroups
```

</details>

## Idea

A **characteristic subgroup** of a [group](group-theory.groups.md) `G` is a
[subgroup](group-theory.subgroups.md) `H` of `G` such that `f H ⊆ H` for every
[isomorphism](group-theory.isomorphisms-groups.md) `f : G ≅ G`. The seemingly
stronger condition, which asserts that `f H = H` for every isomorphism
`f : G ≅ G` is equivalent.

Note that any characteristic subgroup is
[normal](group-theory.normal-subgroups.md), since the condition of being
characteristic implies that `conjugation x H = H`.

## Definition

### The predicate of being a characteristic subgroup

```agda
module _
{l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G)
where

is-characteristic-prop-Subgroup : Prop (l1 ⊔ l2)
is-characteristic-prop-Subgroup =
Π-Prop
( iso-Group G G)
( λ f
leq-prop-Subgroup G
( im-hom-Subgroup G G (hom-iso-Group G G f) H)
( H))
```

### The stronger predicate of being a characteristic subgroup

```agda
module _
{l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G)
where

is-characteristic-prop-Subgroup' : Prop (l1 ⊔ l2)
is-characteristic-prop-Subgroup' =
Π-Prop
( iso-Group G G)
( λ f
has-same-elements-prop-Subgroup G
( im-hom-Subgroup G G (hom-iso-Group G G f) H)
( H))
```

## See also

- [Characteristic subgroup](https://groupprops.subwiki.org/wiki/Characteristic_subgroup)
at Groupprops
- [Characteristic subgroup](https://www.wikidata.org/entity/Q747027) at Wikidata
- [Characteristic subgroup](https://en.wikipedia.org/wiki/Characteristic_subgroup)
at Wikipedia
2 changes: 1 addition & 1 deletion src/group-theory/conjugation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -385,7 +385,7 @@ module _
pr1 (conjugation-equiv-Group x) = equiv-conjugation-Group G x
pr2 (conjugation-equiv-Group x) = distributive-conjugation-mul-Group G x

conjugation-iso-Group : type-Group G type-iso-Group G G
conjugation-iso-Group : type-Group G iso-Group G G
conjugation-iso-Group x = iso-equiv-Group G G (conjugation-equiv-Group x)

preserves-integer-powers-conjugation-Group :
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/epimorphisms-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ module _
```agda
module _
{l1 l2 : Level} (l3 : Level) (G : Group l1)
(H : Group l2) (f : type-iso-Group G H)
(H : Group l2) (f : iso-Group G H)
where

is-epi-iso-Group :
Expand Down
6 changes: 3 additions & 3 deletions src/group-theory/full-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,12 +111,12 @@ module _
pr2 equiv-group-inclusion-full-Subgroup =
preserves-mul-inclusion-full-Subgroup

iso-full-Subgroup : type-iso-Group group-full-Subgroup G
iso-full-Subgroup : iso-Group group-full-Subgroup G
iso-full-Subgroup =
iso-equiv-Group group-full-Subgroup G equiv-group-inclusion-full-Subgroup

inv-iso-full-Subgroup :
type-iso-Group G group-full-Subgroup
iso-Group G group-full-Subgroup
inv-iso-full-Subgroup =
inv-iso-Group group-full-Subgroup G iso-full-Subgroup
```
Expand All @@ -141,7 +141,7 @@ module _
( is-equiv-inclusion-is-full-subtype (subset-Subgroup G H) K)

iso-inclusion-is-full-Subgroup :
is-full-Subgroup G H type-iso-Group (group-Subgroup G H) G
is-full-Subgroup G H iso-Group (group-Subgroup G H) G
pr1 (iso-inclusion-is-full-Subgroup K) = hom-inclusion-Subgroup G H
pr2 (iso-inclusion-is-full-Subgroup K) = is-iso-inclusion-is-full-Subgroup K

Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/generating-elements-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -607,7 +607,7 @@ module _
( is-equiv-ev-element-Group-With-Generating-Element)

iso-ev-element-Group-With-Generating-Element :
type-iso-Ab
iso-Ab
( ab-hom-Ab
( abelian-group-Group-With-Generating-Element G)
( abelian-group-Group-With-Generating-Element G))
Expand Down
53 changes: 53 additions & 0 deletions src/group-theory/images-of-group-homomorphisms.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ module group-theory.images-of-group-homomorphisms where
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.images
open import foundation.images-subtypes
open import foundation.logical-equivalences
open import foundation.propositional-truncations
open import foundation.universal-property-image
Expand Down Expand Up @@ -128,6 +129,58 @@ module _
backward-implication (is-image-image-hom-Group K)
```

### The image of a subgroup of a group homomorphism

```agda
module _
{l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H)
(K : Subgroup l3 G)
where

subset-im-hom-Subgroup : subset-Group (l1 ⊔ l2 ⊔ l3) H
subset-im-hom-Subgroup =
im-subtype (map-hom-Group G H f) (subset-Subgroup G K)

contains-unit-im-hom-Subgroup :
contains-unit-subset-Group H subset-im-hom-Subgroup
contains-unit-im-hom-Subgroup =
unit-trunc-Prop (unit-Subgroup G K , preserves-unit-hom-Group G H f)

abstract
is-closed-under-multiplication-im-hom-Subgroup :
is-closed-under-multiplication-subset-Group H subset-im-hom-Subgroup
is-closed-under-multiplication-im-hom-Subgroup x y u v =
apply-twice-universal-property-trunc-Prop u v
( subset-im-hom-Subgroup (mul-Group H x y))
( λ where
((x' , k) , refl) ((y' , l) , refl)
unit-trunc-Prop
( ( mul-Subgroup G K (x' , k) (y' , l)) ,
( preserves-mul-hom-Group G H f x' y')))

abstract
is-closed-under-inverses-im-hom-Subgroup :
is-closed-under-inverses-subset-Group H subset-im-hom-Subgroup
is-closed-under-inverses-im-hom-Subgroup x u =
apply-universal-property-trunc-Prop u
( subset-im-hom-Subgroup (inv-Group H x))
( λ where
((x' , k) , refl)
unit-trunc-Prop
( ( inv-Subgroup G K (x' , k)) ,
( preserves-inv-hom-Group G H f x')))

im-hom-Subgroup : Subgroup (l1 ⊔ l2 ⊔ l3) H
pr1 im-hom-Subgroup =
subset-im-hom-Subgroup
pr1 (pr2 im-hom-Subgroup) =
contains-unit-im-hom-Subgroup
pr1 (pr2 (pr2 im-hom-Subgroup)) =
is-closed-under-multiplication-im-hom-Subgroup
pr2 (pr2 (pr2 im-hom-Subgroup)) =
is-closed-under-inverses-im-hom-Subgroup
```

## Properties

### A group homomorphism is surjective if and only if its image is the full subgroup
Expand Down
Loading

0 comments on commit 87ae36d

Please sign in to comment.