Skip to content

Commit

Permalink
Modal type theory (#701)
Browse files Browse the repository at this point in the history
### Additions
- Module on modal type theory, including
  - Define the flat modality
  - Define the sharp modality
  - Start work on their adjunction
- Some basic definitions about codiscrete types and the flat modal
operator
- Some additions on higher modalities
- Introduce (strong) subuniverse induction as a relaxation of modal
subuniverse induction
- Show we can induct on the identity types with a higher modality
without appealing to univalence using strong subuniverse induction
  - Start on functorial properties of higher modalities
- Multivariable sections is a definition of sections of multivariable
maps that make it possible to circumvent applying function
extensionality in many cases.
  
(If we at some point in the future want a module on simplicial homotopy
type theory, then it would be fruitful to develop the module on modal
type theory further :))
 
### A regression
It has become clear that the current formulation of higher modalities is
not the most practical one, as it needs to assume everything is
sufficiently contained within a single universe. In addition, the small
relaxation to locally small types seems somewhat contentless and makes
the formalizations more cumbersome. I have started a new line of
formalization to fix these problems in #890.
  • Loading branch information
fredrik-bakke authored Nov 24, 2023
1 parent 4bfc70a commit f9d879c
Show file tree
Hide file tree
Showing 55 changed files with 3,330 additions and 518 deletions.
14 changes: 7 additions & 7 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ repos:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: mixed-line-ending
- id: double-quote-string-fixer
# - id: double-quote-string-fixer
- id: check-ast
- id: check-yaml
# - id: check-json # Doesn't accept json with comments
Expand Down Expand Up @@ -96,12 +96,12 @@ repos:
- id: check-case-conflict
- id: check-merge-conflict

- repo: https://github.com/pre-commit/mirrors-autopep8
rev: 'v2.0.2'
hooks:
- id: autopep8
name: Python scripts formatting
args: ['-i', '--global-config', '/dev/null']
# - repo: https://github.com/pre-commit/mirrors-autopep8
# rev: 'v2.0.2'
# hooks:
# - id: autopep8
# name: Python scripts formatting
# args: ['-i', '--global-config', '/dev/null']

- repo: https://github.com/pre-commit/mirrors-prettier
rev: 'v3.0.0-alpha.6'
Expand Down
4 changes: 4 additions & 0 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,10 @@ Below is a summary of the tasks this tool performs:
- **Mixed line ending**: Ensures consistent use of line endings
([LF vs CRLF](https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/#crlf-vs-lf-what-are-line-endings-anyway)).

<!--
- **Double quoted strings**: Replaces double quoted strings with single quoted
strings.
-->

- **Python AST**: Checks whether Python scripts parse as valid Python.

Expand Down Expand Up @@ -76,9 +78,11 @@ Below is a summary of the tasks this tool performs:
library. This file is also regenerated by `make check` each time it's run. No
manual maintenance is required for this file.

<!--
- **Python scripts formatting**: Performs `autopep8` formatting on Python
scripts. Note that this script takes care of most formatting for Python
scripts, so you should not worry about formatting them.
-->

- **CSS, JS, YAML and Markdown (no codeblocks) formatting**: Performs basic
formatting tasks such as enforcing the 80-character line limit, formatting
Expand Down
3 changes: 3 additions & 0 deletions DESIGN-PRINCIPLES.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,9 @@ makes use of several postulates.
[`synthetic-homotopy-theory.pushouts`](synthetic-homotopy-theory.pushouts.md)
10. Various **Agda built-in types** are postulated in
[`primitives`](primitives.md) and in [`reflection`](reflection.md).
11. The **flat modality** and accompanying modalities, with propositional
computation rules, are postulated in
[`modal-type-theory`](modal-type-theory.md).

Note that there is some redundancy in the postulates we assume. For example, the
[univalence axiom implies function extensionality](foundation.univalence-implies-function-extensionality.md),
Expand Down
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
# files, and if these options are pervasive (i.e. they need to be enabled in all
# modules that include the modules that have them enabled), then they need to be
# added to the everything file as well.
everythingOpts := --guardedness
everythingOpts := --guardedness --cohesion --flat-split
# use "$ export AGDAVERBOSE=-v20" if you want to see all
AGDAVERBOSE ?= -v1
AGDAFILES := $(shell find src -name temp -prune -o -type f \( -name "*.lagda.md" -not -name "everything.lagda.md" \) -print)
Expand Down
80 changes: 40 additions & 40 deletions src/elementary-number-theory/integer-fractions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -143,46 +143,46 @@ transitive-sim-fraction-ℤ x y z s r =
( numerator-fraction-ℤ x)
( denominator-fraction-ℤ z)
( denominator-fraction-ℤ y)) ∙
( ( ap
( (numerator-fraction-ℤ x) *ℤ_)
( commutative-mul-ℤ
( denominator-fraction-ℤ z)
( denominator-fraction-ℤ y))) ∙
( ( inv
( associative-mul-ℤ
( numerator-fraction-ℤ x)
( denominator-fraction-ℤ y)
( denominator-fraction-ℤ z))) ∙
( ( ap ( _*ℤ (denominator-fraction-ℤ z)) r) ∙
( ( associative-mul-ℤ
( numerator-fraction-ℤ y)
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ z)) ∙
( ( ap
( (numerator-fraction-ℤ y) *ℤ_)
( commutative-mul-ℤ
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ z))) ∙
( ( inv
( associative-mul-ℤ
( numerator-fraction-ℤ y)
( denominator-fraction-ℤ z)
( denominator-fraction-ℤ x))) ∙
( ( ap (_*ℤ (denominator-fraction-ℤ x)) s) ∙
( ( associative-mul-ℤ
( numerator-fraction-ℤ z)
( denominator-fraction-ℤ y)
( denominator-fraction-ℤ x)) ∙
( ( ap
( (numerator-fraction-ℤ z) *ℤ_)
( commutative-mul-ℤ
( denominator-fraction-ℤ y)
( denominator-fraction-ℤ x))) ∙
( inv
( associative-mul-ℤ
( numerator-fraction-ℤ z)
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ y)))))))))))))
( ap
( (numerator-fraction-ℤ x) *ℤ_)
( commutative-mul-ℤ
( denominator-fraction-ℤ z)
( denominator-fraction-ℤ y))) ∙
( inv
( associative-mul-ℤ
( numerator-fraction-ℤ x)
( denominator-fraction-ℤ y)
( denominator-fraction-ℤ z))) ∙
( ap ( _*ℤ (denominator-fraction-ℤ z)) r) ∙
( associative-mul-ℤ
( numerator-fraction-ℤ y)
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ z)) ∙
( ap
( (numerator-fraction-ℤ y) *ℤ_)
( commutative-mul-ℤ
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ z))) ∙
( inv
( associative-mul-ℤ
( numerator-fraction-ℤ y)
( denominator-fraction-ℤ z)
( denominator-fraction-ℤ x))) ∙
( ap (_*ℤ (denominator-fraction-ℤ x)) s) ∙
( associative-mul-ℤ
( numerator-fraction-ℤ z)
( denominator-fraction-ℤ y)
( denominator-fraction-ℤ x)) ∙
( ap
( (numerator-fraction-ℤ z) *ℤ_)
( commutative-mul-ℤ
( denominator-fraction-ℤ y)
( denominator-fraction-ℤ x))) ∙
( inv
( associative-mul-ℤ
( numerator-fraction-ℤ z)
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ y))))

equivalence-relation-sim-fraction-ℤ : equivalence-relation lzero fraction-ℤ
pr1 equivalence-relation-sim-fraction-ℤ = sim-fraction-ℤ-Prop
Expand Down
3 changes: 2 additions & 1 deletion src/foundation-core/decidable-propositions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,8 @@ open import foundation-core.subtypes

## Idea

A decidable proposition is a proposition that has a decidable underlying type.
A **decidable proposition** is a [proposition](foundation-core.propositions.md)
that has a [decidable](foundation.decidable-types.md) underlying type.

## Definition

Expand Down
20 changes: 16 additions & 4 deletions src/foundation-core/embeddings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,15 @@ module _
is-emb : (A B) UU (l1 ⊔ l2)
is-emb f = (x y : A) is-equiv (ap f {x} {y})

equiv-ap-is-emb :
{f : A B} (e : is-emb f) {x y : A} (x = y) ≃ (f x = f y)
pr1 (equiv-ap-is-emb {f} e) = ap f
pr2 (equiv-ap-is-emb {f} e {x} {y}) = e x y

inv-equiv-ap-is-emb :
{f : A B} (e : is-emb f) {x y : A} (f x = f y) ≃ (x = y)
inv-equiv-ap-is-emb e = inv-equiv (equiv-ap-is-emb e)

infix 5 _↪_
_↪_ :
{l1 l2 : Level} UU l1 UU l2 UU (l1 ⊔ l2)
Expand All @@ -50,15 +59,18 @@ module _
where

map-emb : A ↪ B A B
map-emb f = pr1 f
map-emb = pr1

is-emb-map-emb : (f : A ↪ B) is-emb (map-emb f)
is-emb-map-emb f = pr2 f
is-emb-map-emb = pr2

equiv-ap-emb :
(e : A ↪ B) {x y : A} (x = y) ≃ (map-emb e x = map-emb e y)
pr1 (equiv-ap-emb e {x} {y}) = ap (map-emb e)
pr2 (equiv-ap-emb e {x} {y}) = is-emb-map-emb e x y
equiv-ap-emb e = equiv-ap-is-emb (is-emb-map-emb e)

inv-equiv-ap-emb :
(e : A ↪ B) {x y : A} (map-emb e x = map-emb e y) ≃ (x = y)
inv-equiv-ap-emb e = inv-equiv (equiv-ap-emb e)
```

## Examples
Expand Down
6 changes: 4 additions & 2 deletions src/foundation-core/equality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,8 @@ module _
( is-retraction-pair-eq-Σ s t)

equiv-eq-pair-Σ : (s t : Σ A B) Eq-Σ s t ≃ (s = t)
equiv-eq-pair-Σ s t = pair eq-pair-Σ' (is-equiv-eq-pair-Σ s t)
pr1 (equiv-eq-pair-Σ s t) = eq-pair-Σ'
pr2 (equiv-eq-pair-Σ s t) = is-equiv-eq-pair-Σ s t

abstract
is-equiv-pair-eq-Σ : (s t : Σ A B) is-equiv (pair-eq-Σ {s} {t})
Expand All @@ -104,7 +105,8 @@ module _
( is-section-pair-eq-Σ s t)

equiv-pair-eq-Σ : (s t : Σ A B) (s = t) ≃ Eq-Σ s t
equiv-pair-eq-Σ s t = pair pair-eq-Σ (is-equiv-pair-eq-Σ s t)
pr1 (equiv-pair-eq-Σ s t) = pair-eq-Σ
pr2 (equiv-pair-eq-Σ s t) = is-equiv-pair-eq-Σ s t

η-pair : (t : Σ A B) (pair (pr1 t) (pr2 t)) = t
η-pair t = refl
Expand Down
59 changes: 30 additions & 29 deletions src/foundation-core/small-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,8 @@ open import foundation-core.propositions

## Idea

A type is said to be small with respect to a universe `UU l` if it is equivalent
to a type in `UU l`.
A type is said to be **small** with respect to a universe `UU l` if it is
[equivalent](foundation-core.equivalences.md) to a type in `UU l`.

## Definitions

Expand All @@ -45,48 +45,49 @@ is-small :
(l : Level) {l1 : Level} (A : UU l1) UU (lsuc l ⊔ l1)
is-small l A = Σ (UU l) (λ X A ≃ X)

type-is-small :
{l l1 : Level} {A : UU l1} is-small l A UU l
type-is-small = pr1
module _
{l l1 : Level} {A : UU l1} (H : is-small l A)
where

type-is-small : UU l
type-is-small = pr1 H

equiv-is-small :
{l l1 : Level} {A : UU l1} (H : is-small l A) A ≃ type-is-small H
equiv-is-small = pr2
equiv-is-small : A ≃ type-is-small
equiv-is-small = pr2 H

inv-equiv-is-small :
{l l1 : Level} {A : UU l1} (H : is-small l A) type-is-small H ≃ A
inv-equiv-is-small H = inv-equiv (equiv-is-small H)
inv-equiv-is-small : type-is-small ≃ A
inv-equiv-is-small = inv-equiv equiv-is-small

map-equiv-is-small :
{l l1 : Level} {A : UU l1} (H : is-small l A) A type-is-small H
map-equiv-is-small H = map-equiv (equiv-is-small H)
map-equiv-is-small : A type-is-small
map-equiv-is-small = map-equiv equiv-is-small

map-inv-equiv-is-small :
{l l1 : Level} {A : UU l1} (H : is-small l A) type-is-small H A
map-inv-equiv-is-small H = map-inv-equiv (equiv-is-small H)
map-inv-equiv-is-small : type-is-small A
map-inv-equiv-is-small = map-inv-equiv equiv-is-small
```

### The universe of `UU l1`-small types in a universe `UU l2`
### The subuniverse of `UU l1`-small types in `UU l2`

```agda
Small-Type : (l1 l2 : Level) UU (lsuc l1 ⊔ lsuc l2)
Small-Type l1 l2 = Σ (UU l2) (is-small l1)

module _
{l1 l2 : Level} (X : Small-Type l1 l2)
{l1 l2 : Level} (A : Small-Type l1 l2)
where

type-Small-Type : UU l2
type-Small-Type = pr1 X
type-Small-Type = pr1 A

is-small-type-Small-Type : is-small l1 type-Small-Type
is-small-type-Small-Type = pr2 X
is-small-type-Small-Type = pr2 A

small-type-Small-Type : UU l1
small-type-Small-Type = type-is-small is-small-type-Small-Type

equiv-is-small-type-Small-Type : type-Small-Type ≃ small-type-Small-Type
equiv-is-small-type-Small-Type = equiv-is-small is-small-type-Small-Type
equiv-is-small-type-Small-Type :
type-Small-Type ≃ small-type-Small-Type
equiv-is-small-type-Small-Type =
equiv-is-small is-small-type-Small-Type
```

## Properties
Expand Down Expand Up @@ -148,8 +149,8 @@ is-small-lsuc {l} X = is-small-lmax (lsuc l) X
is-small-equiv :
{l1 l2 l3 : Level} {A : UU l1} (B : UU l2)
A ≃ B is-small l3 B is-small l3 A
pr1 (is-small-equiv B e (pair X h)) = X
pr2 (is-small-equiv B e (pair X h)) = h ∘e e
pr1 (is-small-equiv B e (X , h)) = X
pr2 (is-small-equiv B e (X , h)) = h ∘e e

is-small-equiv' :
{l1 l2 l3 : Level} (A : UU l1) {B : UU l2}
Expand Down Expand Up @@ -194,9 +195,9 @@ pr2 (is-small-is-contr l H) = equiv-is-contr H is-contr-raise-unit
is-small-Σ :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : A UU l2}
is-small l3 A ((x : A) is-small l4 (B x)) is-small (l3 ⊔ l4) (Σ A B)
pr1 (is-small-Σ {B = B} (pair X e) H) =
pr1 (is-small-Σ {B = B} (X , e) H) =
Σ X (λ x pr1 (H (map-inv-equiv e x)))
pr2 (is-small-Σ {B = B} (pair X e) H) =
pr2 (is-small-Σ {B = B} (X , e) H) =
equiv-Σ
( λ x pr1 (H (map-inv-equiv e x)))
( e)
Expand Down Expand Up @@ -237,9 +238,9 @@ is-small-Π :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : A UU l2}
is-small l3 A ((x : A) is-small l4 (B x))
is-small (l3 ⊔ l4) ((x : A) B x)
pr1 (is-small-Π {B = B} (pair X e) H) =
pr1 (is-small-Π {B = B} (X , e) H) =
(x : X) pr1 (H (map-inv-equiv e x))
pr2 (is-small-Π {B = B} (pair X e) H) =
pr2 (is-small-Π {B = B} (X , e) H) =
equiv-Π
( λ (x : X) pr1 (H (map-inv-equiv e x)))
( e)
Expand Down
4 changes: 4 additions & 0 deletions src/foundation-core/subtypes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,10 @@ module _
(x : type-subtype) is-in-subtype (inclusion-subtype x)
is-in-subtype-inclusion-subtype = pr2

eq-is-in-subtype :
{x : A} {p q : is-in-subtype x} p = q
eq-is-in-subtype {x} = eq-is-prop (is-prop-is-in-subtype x)

is-closed-under-eq-subtype :
{x y : A} is-in-subtype x (x = y) is-in-subtype y
is-closed-under-eq-subtype p refl = p
Expand Down
2 changes: 2 additions & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ open import foundation.commuting-squares-of-homotopies public
open import foundation.commuting-squares-of-identifications public
open import foundation.commuting-squares-of-maps public
open import foundation.commuting-triangles-of-homotopies public
open import foundation.commuting-triangles-of-identifications public
open import foundation.commuting-triangles-of-maps public
open import foundation.complements public
open import foundation.complements-subtypes public
Expand Down Expand Up @@ -208,6 +209,7 @@ open import foundation.multivariable-functoriality-set-quotients public
open import foundation.multivariable-homotopies public
open import foundation.multivariable-operations public
open import foundation.multivariable-relations public
open import foundation.multivariable-sections public
open import foundation.negated-equality public
open import foundation.negation public
open import foundation.noncontractible-types public
Expand Down
Loading

0 comments on commit f9d879c

Please sign in to comment.