Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor universal property of suspensions #961

Merged
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 12 additions & 12 deletions src/elementary-number-theory/integers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -202,7 +202,7 @@ pr2 equiv-pred-ℤ = is-equiv-pred-ℤ
```agda
is-injective-succ-ℤ : is-injective succ-ℤ
is-injective-succ-ℤ {x} {y} p =
inv (is-retraction-pred-ℤ x) ∙ (ap pred-ℤ p ∙ is-retraction-pred-ℤ y)
inv (is-retraction-pred-ℤ x) ∙ ap pred-ℤ p ∙ is-retraction-pred-ℤ y

has-no-fixed-points-succ-ℤ : (x : ℤ) → succ-ℤ x ≠ x
has-no-fixed-points-succ-ℤ (inl zero-ℕ) ()
Expand Down Expand Up @@ -309,7 +309,8 @@ is-set-is-positive-ℤ (inr (inl x)) = is-set-empty
is-set-is-positive-ℤ (inr (inr x)) = is-set-unit

is-positive-ℤ-Set : ℤ → Set lzero
is-positive-ℤ-Set z = pair (is-positive-ℤ z) (is-set-is-positive-ℤ z)
pr1 (is-positive-ℤ-Set z) = is-positive-ℤ z
pr2 (is-positive-ℤ-Set z) = is-set-is-positive-ℤ z

positive-ℤ : UU lzero
positive-ℤ = Σ ℤ is-positive-ℤ
Expand Down Expand Up @@ -409,8 +410,8 @@ pr2 equiv-nonnegative-int-ℕ = is-equiv-nonnegative-int-ℕ
is-injective-nonnegative-int-ℕ : is-injective nonnegative-int-ℕ
is-injective-nonnegative-int-ℕ {x} {y} p =
( inv (is-retraction-nat-nonnegative-ℤ x)) ∙
( ( ap nat-nonnegative-ℤ p) ∙
( is-retraction-nat-nonnegative-ℤ y))
( ap nat-nonnegative-ℤ p) ∙
( is-retraction-nat-nonnegative-ℤ y)

decide-is-nonnegative-ℤ :
{x : ℤ} → (is-nonnegative-ℤ x) + (is-nonnegative-ℤ (neg-ℤ x))
Expand All @@ -431,17 +432,16 @@ succ-int-ℕ (succ-ℕ x) = refl

```agda
is-injective-neg-ℤ : is-injective neg-ℤ
is-injective-neg-ℤ {x} {y} p = inv (neg-neg-ℤ x) ∙ (ap neg-ℤ p ∙ neg-neg-ℤ y)
is-injective-neg-ℤ {x} {y} p = inv (neg-neg-ℤ x) ∙ ap neg-ℤ p ∙ neg-neg-ℤ y

is-zero-is-zero-neg-ℤ :
(x : ℤ) → is-zero-ℤ (neg-ℤ x) → is-zero-ℤ x
is-zero-is-zero-neg-ℤ : (x : ℤ) → is-zero-ℤ (neg-ℤ x) → is-zero-ℤ x
is-zero-is-zero-neg-ℤ (inr (inl star)) H = refl
```

## See also

1. We show in
[`structured-types.initial-pointed-type-equipped-with-automorphism`](structured-types.initial-pointed-type-equipped-with-automorphism.md)
that ℤ is the initial pointed type equipped with an automorphism.
2. The group of integers is constructed in
[`elementary-number-theory.group-of-integers`](elementary-number-theory.group-of-integers.md).
- We show in
[`structured-types.initial-pointed-type-equipped-with-automorphism`](structured-types.initial-pointed-type-equipped-with-automorphism.md)
that ℤ is the initial pointed type equipped with an automorphism.
- The group of integers is constructed in
[`elementary-number-theory.group-of-integers`](elementary-number-theory.group-of-integers.md).
9 changes: 0 additions & 9 deletions src/foundation/products-of-tuples-of-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,13 +38,4 @@ pr-product-tuple-types :
{l : Level} {n : ℕ} (A : tuple-types l n) (i : Fin n) →
product-tuple-types n A → A i
pr-product-tuple-types A i f = f i

{-
equiv-universal-property-product-tuple-types :
{l : Level} {n : ℕ} (A : tuple-types l (succ-ℕ n)) (i : Fin (succ-ℕ n)) →
( product-tuple-types (succ-ℕ n) A) ≃
( ( product-tuple-types n {!!}) × A i)
equiv-universal-property-product-tuple-types A i =
{!!}
-}
```
20 changes: 14 additions & 6 deletions src/foundation/unit-type.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ open import foundation-core.truncation-levels

## Idea

The unit type is inductively generated by one point.
The **unit type** is a type inductively generated by a single point.

## Definition

Expand All @@ -41,22 +41,30 @@ record unit : UU lzero where
### The induction principle of the unit type

```agda
ind-unit : {l : Level} {P : unit → UU l} → P star → ((x : unit) → P x)
ind-unit : {l : Level} {P : unit → UU l} → P star → (x : unit) → P x
ind-unit p star = p
```

### The terminal map out of a type

```agda
terminal-map : {l : Level} {A : UU l} → A → unit
terminal-map = const _ unit star
module _
{l : Level} {A : UU l}
where

terminal-map : A → unit
terminal-map = const A unit star
```

### Points as maps out of the unit type

```agda
point : {l : Level} {A : UU l} → A → (unit → A)
point a = const unit _ a
module _
{l : Level} {A : UU l}
where

point : A → (unit → A)
point = const unit A
```

### Raising the universe level of the unit type
Expand Down
25 changes: 18 additions & 7 deletions src/foundation/universal-property-cartesian-product-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,24 +36,35 @@ product
### The universal property of cartesian products as pullbacks

```agda
universal-property-product :
map-up-product :
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
{l1 l2 l3 : Level} {X : UU l1} {A : X → UU l2} {B : X → UU l3} →
((x : X) → A x × B x) ≃ (((x : X) → A x) × ((x : X) → B x))
pr1 universal-property-product f = (λ x → pr1 (f x)) , (λ x → pr2 (f x))
pr2 universal-property-product =
((x : X) → A x × B x) → (((x : X) → A x) × ((x : X) → B x))
pr1 (map-up-product f) x = pr1 (f x)
pr2 (map-up-product f) x = pr2 (f x)

up-product :
{l1 l2 l3 : Level} {X : UU l1} {A : X → UU l2} {B : X → UU l3} →
is-equiv (map-up-product {A = A} {B})
up-product =
is-equiv-is-invertible
( λ (f , g) → (λ x → (f x , g x)))
( refl-htpy)
( refl-htpy)

module _
{l1 l2 : Level} (A : UU l1) (B : UU l2)
where
equiv-up-product :
{l1 l2 l3 : Level} {X : UU l1} {A : X → UU l2} {B : X → UU l3} →
((x : X) → A x × B x) ≃ (((x : X) → A x) × ((x : X) → B x))
pr1 equiv-up-product = map-up-product
pr2 equiv-up-product = up-product
```

We construct the cone for two maps into the unit type.

```agda
module _
{l1 l2 : Level} (A : UU l1) (B : UU l2)
where

cone-prod : cone (const A unit star) (const B unit star) (A × B)
pr1 cone-prod = pr1
pr1 (pr2 cone-prod) = pr2
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -88,8 +88,8 @@ module _
( λ V →
( equiv-prod
( id-equiv)
( ( inv-equiv universal-property-product) ∘e
( equiv-prod id-equiv equiv-ev-pair))) ∘e
( inv-equiv equiv-up-product ∘e
equiv-prod id-equiv equiv-ev-pair)) ∘e
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
( left-unit-law-Σ-is-contr
( is-torsorial-equiv' (Σ U V))
( Σ U V , id-equiv))))))) ∘e
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -159,8 +159,7 @@ module _
( λ B →
( equiv-prod
( id-equiv)
( universal-property-product ∘e
equiv-postcomp X (C2 A B))) ∘e
( equiv-up-product ∘e equiv-postcomp X (C2 A B))) ∘e
left-unit-law-Σ-is-contr
( is-torsorial-equiv-subuniverse'
( P)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -110,8 +110,7 @@ module _
( λ B →
( equiv-prod
( id-equiv)
( universal-property-product ∘e
equiv-postcomp X (C1 A B))) ∘e
( equiv-up-product ∘e equiv-postcomp X (C1 A B))) ∘e
( left-unit-law-Σ-is-contr
( is-torsorial-equiv' (A × B))
( A × B , id-equiv))))) ∘e
Expand Down
2 changes: 1 addition & 1 deletion src/synthetic-homotopy-theory/circle.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -433,7 +433,7 @@ pr2 (pr2 dependent-suspension-structure-sphere-1-circle-sphere-1) =
sphere-1-circle-sphere-1 : section sphere-1-circle
pr1 sphere-1-circle-sphere-1 = circle-sphere-1
pr2 sphere-1-circle-sphere-1 =
map-inv-dependent-up-suspension
map-inv-dup-suspension
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
( λ x → (sphere-1-circle (circle-sphere-1 x)) = x)
( dependent-suspension-structure-sphere-1-circle-sphere-1)
```
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,16 +43,16 @@ pr1 (dependent-ev-suspension s B f) =
pr1 (pr2 (dependent-ev-suspension s B f)) =
f (south-suspension-structure s)
pr2 (pr2 (dependent-ev-suspension s B f)) =
(apd f)(meridian-suspension-structure s)
apd f ∘ meridian-suspension-structure s

module _
(l : Level) {l1 l2 : Level} {X : UU l1} {Y : UU l2}
{l1 l2 : Level} {X : UU l1} {Y : UU l2}
(s : suspension-structure X Y)
where

dependent-universal-property-suspension : UU (l1 ⊔ l2 ⊔ lsuc l)
dependent-universal-property-suspension : UUω
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
dependent-universal-property-suspension =
(B : Y → UU l) → is-equiv (dependent-ev-suspension s B)
{l : Level} (B : Y → UU l) → is-equiv (dependent-ev-suspension s B)
```

#### Coherence between `dependent-ev-suspension` and `dependent-cocone-map`
Expand All @@ -66,12 +66,12 @@ module _
(s : suspension-structure X Y) →
(B : Y → UU l3) →
( ( map-equiv
( equiv-dependent-suspension-structure-suspension-cocone s B)) ∘
( dependent-cocone-map
( const X unit star)
( const X unit star)
( cocone-suspension-structure X Y s)
( B))) ~
( equiv-dependent-suspension-structure-suspension-cocone s B)) ∘
( dependent-cocone-map
( const X unit star)
( const X unit star)
( cocone-suspension-structure X Y s)
( B))) ~
( dependent-ev-suspension s B)
triangle-dependent-ev-suspension s B = refl-htpy
```
30 changes: 12 additions & 18 deletions src/synthetic-homotopy-theory/suspension-structures.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,9 @@ h : (x : X) → (f ∘ (const X unit star)) x = (g ∘ (const X unit star)) x
```

Using the
[universal property of `unit`](foundation.universal-property-unit-type.md), we
can characterize suspension cocones as equivalent to a selection of "north" and
"south" poles
[universal property of the unit type](foundation.universal-property-unit-type.md),
we can characterize suspension cocones as equivalent to a selection of "north"
and "south" poles

```text
north , south : Y
Expand All @@ -74,7 +74,7 @@ We call this type of structure `suspension-structure`.
```agda
suspension-cocone :
{l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2)
suspension-cocone X Y = cocone (const X unit star) (const X unit star) Y
suspension-cocone X Y = cocone (terminal-map {A = X}) (terminal-map {A = X}) Y
```

### Suspension structures on a type
Expand Down Expand Up @@ -154,13 +154,9 @@ is-equiv-map-inv-equiv-suspension-structure-suspension-cocone X Z =

htpy-comparison-suspension-cocone-suspension-structure :
{l1 l2 : Level} (X : UU l1) (Z : UU l2) →
( map-inv-equiv-suspension-structure-suspension-cocone X Z)
~
( cocone-suspension-structure X Z)
htpy-comparison-suspension-cocone-suspension-structure
( X)
( Z)
( s) =
( map-inv-equiv-suspension-structure-suspension-cocone X Z) ~
( cocone-suspension-structure X Z)
htpy-comparison-suspension-cocone-suspension-structure X Z s =
is-injective-map-equiv
( equiv-suspension-structure-suspension-cocone X Z)
( is-section-map-inv-equiv
Expand All @@ -178,9 +174,9 @@ module _
htpy-suspension-structure :
(c c' : suspension-structure X Z) → UU (l1 ⊔ l2)
htpy-suspension-structure c c' =
Σ ( (north-suspension-structure c)(north-suspension-structure c'))
Σ ( north-suspension-structure c = north-suspension-structure c')
( λ p →
Σ ( ( south-suspension-structure c)( south-suspension-structure c'))
Σ ( south-suspension-structure c = south-suspension-structure c')
( λ q →
( x : X) →
( meridian-suspension-structure c x ∙ q) =
Expand Down Expand Up @@ -267,9 +263,7 @@ module _
ind-htpy-suspension-structure :
{ l : Level}
( P :
( c' : suspension-structure X Z) →
( htpy-suspension-structure c c') →
UU l) →
(c' : suspension-structure X Z) → htpy-suspension-structure c c' → UU l) →
( P c refl-htpy-suspension-structure) →
( c' : suspension-structure X Z)
( H : htpy-suspension-structure c c') →
Expand Down Expand Up @@ -300,11 +294,11 @@ module _
ap-pr1-eq-htpy-suspension-structure =
ind-htpy-suspension-structure
( λ c' H → (ap (pr1) (eq-htpy-suspension-structure H)) = (pr1 H))
( (ap
( ap
( ap pr1)
( is-retraction-map-inv-equiv
( extensionality-suspension-structure c c)
( refl))))
( refl)))

ap-pr1∘pr2-eq-htpy-suspension-structure :
(c' : suspension-structure X Z) (H : htpy-suspension-structure c c') →
Expand Down
Loading