Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Well-orderings and Ordinals #1072

Merged
merged 22 commits into from
Feb 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions Cubical/Data/Cardinal.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{-# OPTIONS --safe #-}
module Cubical.Data.Cardinal where

open import Cubical.Data.Cardinal.Base public
open import Cubical.Data.Cardinal.Properties public
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ This file contains:

-}
{-# OPTIONS --safe #-}
module Cubical.Data.Cardinality.Base where
module Cubical.Data.Cardinal.Base where

open import Cubical.HITs.SetTruncation as ∥₂
open import Cubical.Foundations.Prelude
Expand All @@ -19,7 +19,7 @@ open import Cubical.Data.Unit

private
variable
ℓ : Level
ℓ' : Level

-- First, we define a cardinal as the set truncation of Set
Card : Type (ℓ-suc ℓ)
Expand All @@ -41,14 +41,14 @@ card = ∣_∣₂
𝟙 = card (Unit* , isSetUnit*)

-- Now we define some arithmetic
_+_ : Card {ℓ} → Card {ℓ} → Card {ℓ}
_+_ : Card {ℓ} → Card {ℓ'} → Card {ℓ-max ℓ ℓ'}
_+_ = ∥₂.rec2 isSetCard λ (A , isSetA) (B , isSetB)
→ card ((A ⊎ B) , isSet⊎ isSetA isSetB)

_·_ : Card {ℓ} → Card {ℓ} → Card {ℓ}
_·_ : Card {ℓ} → Card {ℓ'} → Card {ℓ-max ℓ ℓ'}
_·_ = ∥₂.rec2 isSetCard λ (A , isSetA) (B , isSetB)
→ card ((A × B) , isSet× isSetA isSetB)

_^_ : Card {ℓ} → Card {ℓ} → Card {ℓ}
_^_ : Card {ℓ} → Card {ℓ'} → Card {ℓ-max ℓ ℓ'}
_^_ = ∥₂.rec2 isSetCard λ (A , isSetA) (B , _)
→ card ((B → A) , isSet→ isSetA)
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,10 @@ This file contains:

-}
{-# OPTIONS --safe #-}
module Cubical.Data.Cardinality.Properties where
module Cubical.Data.Cardinal.Properties where

open import Cubical.HITs.SetTruncation as ∥₂
open import Cubical.Data.Cardinality.Base
open import Cubical.Data.Cardinal.Base

open import Cubical.Algebra.CommSemiring

Expand All @@ -30,55 +30,60 @@ open import Cubical.Relation.Binary.Order.Properties

private
variable
ℓ : Level
ℓ' ℓ'' ℓa ℓb ℓc ℓd : Level

-- Cardinality is a commutative semiring
module _ where
private
+Assoc : (A B C : Card {ℓ}) → A + (B + C) ≡ (A + B) + C
+Assoc : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc})
→ A + (B + C) ≡ (A + B) + C
+Assoc = ∥₂.elim3 (λ _ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(sym (isoToPath ⊎-assoc-Iso)))

·Assoc : (A B C : Card {ℓ}) → A · (B · C) ≡ (A · B) · C
·Assoc : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc})
→ A · (B · C) ≡ (A · B) · C
·Assoc = ∥₂.elim3 (λ _ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(sym (isoToPath Σ-assoc-Iso)))

+IdR𝟘 : (A : Card {ℓ}) → A + 𝟘 ≡ A
+IdR𝟘 : (A : Card {ℓ}) → A + 𝟘 {ℓ} ≡ A
+IdR𝟘 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath ⊎-IdR-⊥*-Iso))

+IdL𝟘 : (A : Card {ℓ}) → 𝟘 + A ≡ A
+IdL𝟘 : (A : Card {ℓ}) → 𝟘 {ℓ} + A ≡ A
+IdL𝟘 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath ⊎-IdL-⊥*-Iso))

·IdR𝟙 : (A : Card {ℓ}) → A · 𝟙 ≡ A
·IdR𝟙 : (A : Card {ℓ}) → A · 𝟙 {ℓ} ≡ A
·IdR𝟙 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath rUnit*×Iso))

·IdL𝟙 : (A : Card {ℓ}) → 𝟙 · A ≡ A
·IdL𝟙 : (A : Card {ℓ}) → 𝟙 {ℓ} · A ≡ A
·IdL𝟙 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath lUnit*×Iso))

+Comm : (A B : Card {ℓ}) → (A + B) ≡ (B + A)
+Comm : (A : Card {ℓa}) (B : Card {ℓb})
→ (A + B) ≡ (B + A)
+Comm = ∥₂.elim2 (λ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath ⊎-swap-Iso))

·Comm : (A B : Card {ℓ}) → (A · B) ≡ (B · A)
·Comm : (A : Card {ℓa}) (B : Card {ℓb})
→ (A · B) ≡ (B · A)
·Comm = ∥₂.elim2 (λ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath Σ-swap-Iso))

·LDist+ : (A B C : Card {ℓ}) → A · (B + C) ≡ (A · B) + (A · C)
·LDist+ : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc})
→ A · (B + C) ≡ (A · B) + (A · C)
·LDist+ = ∥₂.elim3 (λ _ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath ×DistL⊎Iso))
(isoToPath ×DistR⊎Iso))

AnnihilL : (A : Card {ℓ}) → 𝟘 · A ≡ 𝟘
AnnihilL = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
Expand All @@ -90,7 +95,7 @@ module _ where

-- Exponentiation is also well-behaved

^AnnihilR𝟘 : (A : Card {ℓ}) → A ^ 𝟘 ≡ 𝟙
^AnnihilR𝟘 : (A : Card {ℓ}) → A ^ 𝟘 {ℓ} ≡ 𝟙 {ℓ}
^AnnihilR𝟘 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath (iso⊥ _)))
Expand All @@ -100,7 +105,7 @@ module _ where
Iso.rightInv (iso⊥ A) _ = refl
Iso.leftInv (iso⊥ A) _ i ()

^IdR𝟙 : (A : Card {ℓ}) → A ^ 𝟙 ≡ A
^IdR𝟙 : (A : Card {ℓ}) → A ^ 𝟙 {ℓ} ≡ A
^IdR𝟙 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath (iso⊤ _)))
Expand All @@ -110,7 +115,7 @@ module _ where
Iso.rightInv (iso⊤ _) _ = refl
Iso.leftInv (iso⊤ _) _ = refl

^AnnihilL𝟙 : (A : Card {ℓ}) → 𝟙 ^ A ≡ 𝟙
^AnnihilL𝟙 : (A : Card {ℓ}) → 𝟙 {ℓ} ^ A ≡ 𝟙 {ℓ}
^AnnihilL𝟙 = ∥₂.elim (λ _ → isProp→isSet (isSetCard _ _))
λ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath (iso⊤ _)))
Expand All @@ -120,12 +125,14 @@ module _ where
Iso.rightInv (iso⊤ _) _ = refl
Iso.leftInv (iso⊤ _) _ = refl

^LDist+ : (A B C : Card {ℓ}) → A ^ (B + C) ≡ (A ^ B) · (A ^ C)
^LDist+ : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc})
→ A ^ (B + C) ≡ (A ^ B) · (A ^ C)
^LDist+ = ∥₂.elim3 (λ _ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath Π⊎Iso))

^Assoc· : (A B C : Card {ℓ}) → A ^ (B · C) ≡ (A ^ B) ^ C
^Assoc· : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc})
→ A ^ (B · C) ≡ (A ^ B) ^ C
^Assoc· = ∥₂.elim3 (λ _ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath (is _ _ _)))
Expand All @@ -134,7 +141,8 @@ module _ where
(C × B → A) Iso⟨ curryIso ⟩
(C → B → A) ∎Iso

^RDist· : (A B C : Card {ℓ}) → (A · B) ^ C ≡ (A ^ C) · (B ^ C)
^RDist· : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc})
→ (A · B) ^ C ≡ (A ^ C) · (B ^ C)
^RDist· = ∥₂.elim3 (λ _ _ _ → isProp→isSet (isSetCard _ _))
λ _ _ _ → cong ∣_∣₂ (Σ≡Prop (λ _ → isPropIsSet)
(isoToPath Σ-Π-Iso))
Expand All @@ -143,51 +151,48 @@ module _ where
-- With basic arithmetic done, we can now define an ordering over cardinals
module _ where
private
_≲'_ : Card {ℓ} → Card {ℓ} → hProp
_≲'_ : Card {ℓ} → Card {ℓ'} → hProp (ℓ-max ℓ ℓ')
_≲'_ = ∥₂.rec2 isSetHProp λ (A , _) (B , _) → ∥ A ↪ B ∥₁ , isPropPropTrunc

_≲_ : Rel (Card {ℓ}) (Card {ℓ})
_≲_ : Rel (Card {ℓ}) (Card {ℓ'}) (ℓ-max ℓ ℓ')
A ≲ B = ⟨ A ≲' B ⟩

isPropValued≲ : (A : Card {ℓ}) (B : Card {ℓ'}) → isProp (A ≲ B)
isPropValued≲ a b = str (a ≲' b)

isRefl≲ : BinaryRelation.isRefl {A = Card {ℓ}} _≲_
isRefl≲ = ∥₂.elim (λ A → isProp→isSet (isPropValued≲ A A))
λ (A , _) → ∣ id↪ A ∣₁

isTrans≲ : (A : Card {ℓ}) (B : Card {ℓ'}) (C : Card {ℓ''})
→ A ≲ B → B ≲ C → A ≲ C
isTrans≲ = ∥₂.elim3
(λ x _ z → isSetΠ2 λ _ _ → isProp→isSet (isPropValued≲ x z))
λ (A , _) (B , _) (C , _)
→ ∥₁.map2 λ A↪B B↪C → compEmbedding B↪C A↪B

isPreorder≲ : IsPreorder {ℓ-suc ℓ} _≲_
isPreorder≲
= ispreorder isSetCard prop reflexive transitive
where prop : BinaryRelation.isPropValued _≲_
prop a b = str (a ≲' b)

reflexive : BinaryRelation.isRefl _≲_
reflexive = ∥₂.elim (λ A → isProp→isSet (prop A A))
(λ (A , _) → ∣ id↪ A ∣₁)

transitive : BinaryRelation.isTrans _≲_
transitive = ∥₂.elim3 (λ x _ z → isSetΠ2
λ _ _ → isProp→isSet
(prop x z))
(λ (A , _) (B , _) (C , _)
→ ∥₁.map2 λ A↪B B↪C
→ compEmbedding
B↪C
A↪B)
= ispreorder isSetCard isPropValued≲ isRefl≲ isTrans≲

isLeast𝟘 : ∀{ℓ} → isLeast isPreorder≲ (Card {ℓ} , id↪ (Card {ℓ})) (𝟘 {ℓ})
isLeast𝟘 = ∥₂.elim (λ x → isProp→isSet (IsPreorder.is-prop-valued
isPreorder≲ 𝟘 x))
isLeast𝟘 = ∥₂.elim (λ x → isProp→isSet (isPropValued≲ 𝟘 x))
(λ _ → ∣ ⊥.rec* , (λ ()) ∣₁)

-- Our arithmetic behaves as expected over our preordering
+Monotone≲ : (A B C D : Card {ℓ}) → A ≲ C → B ≲ D → (A + B) ≲ (C + D)
+Monotone≲ : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc}) (D : Card {ℓd})
→ A ≲ C → B ≲ D → (A + B) ≲ (C + D)
+Monotone≲
= ∥₂.elim4 (λ w x y z → isSetΠ2 λ _ _ → isProp→isSet (IsPreorder.is-prop-valued
isPreorder≲
= ∥₂.elim4 (λ w x y z → isSetΠ2 λ _ _ → isProp→isSet (isPropValued≲
(w + x)
(y + z)))
λ (A , _) (B , _) (C , _) (D , _)
→ ∥₁.map2 λ A↪C B↪D → ⊎Monotone↪ A↪C B↪D

·Monotone≲ : (A B C D : Card {ℓ}) → A ≲ C → B ≲ D → (A · B) ≲ (C · D)
·Monotone≲ : (A : Card {ℓa}) (B : Card {ℓb}) (C : Card {ℓc}) (D : Card {ℓd})
→ A ≲ C → B ≲ D → (A · B) ≲ (C · D)
·Monotone≲
= ∥₂.elim4 (λ w x y z → isSetΠ2 λ _ _ → isProp→isSet (IsPreorder.is-prop-valued
isPreorder≲
= ∥₂.elim4 (λ w x y z → isSetΠ2 λ _ _ → isProp→isSet (isPropValued≲
(w · x)
(y · z)))
λ (A , _) (B , _) (C , _) (D , _)
Expand Down
5 changes: 0 additions & 5 deletions Cubical/Data/Cardinality.agda

This file was deleted.

3 changes: 3 additions & 0 deletions Cubical/Data/Empty/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,6 @@ rec* ()

elim : {A : ⊥ → Type ℓ} → (x : ⊥) → A x
elim ()

elim* : {A : ⊥* {ℓ'} → Type ℓ} → (x : ⊥* {ℓ'}) → A x
elim* ()
5 changes: 5 additions & 0 deletions Cubical/Data/Ordinal.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{-# OPTIONS --safe #-}
module Cubical.Data.Ordinal where

open import Cubical.Data.Ordinal.Base public
open import Cubical.Data.Ordinal.Properties public
Loading
Loading