Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updating broken notebooks #57

Merged
merged 9 commits into from
Oct 8, 2024
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/docker_push.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ on:
- 'master'
paths:
- 'Dockerfile'
- 'Dockerfile.conda'
- 'binder/environment.yml'
- '.github/workflows/docker_push.yml'

# Defines two custom environment variables for the workflow. These are used for the Container registry domain, and a name for the Docker image that this workflow builds.
Expand Down Expand Up @@ -67,4 +67,4 @@ jobs:
subject-name: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME}}
subject-digest: ${{ steps.push.outputs.digest }}
push-to-registry: true


62 changes: 50 additions & 12 deletions 13-TeV-examples/uproot_python/CoffeaHZZAnalysis.ipynb

Large diffs are not rendered by default.

591 changes: 538 additions & 53 deletions 13-TeV-examples/uproot_python/Dark_Matter_Machine_Learning.ipynb
Soap2G marked this conversation as resolved.
Show resolved Hide resolved

Large diffs are not rendered by default.

62 changes: 46 additions & 16 deletions 13-TeV-examples/uproot_python/Find_the_Z.ipynb
Soap2G marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {
"scrolled": true
},
Expand Down Expand Up @@ -136,9 +136,20 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"('data_A.exactly2lep.root', <http.client.HTTPMessage at 0x7f41f7c0cd00>)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filename = 'data_A.exactly2lep.root'\n",
"url = 'https://atlas-opendata.web.cern.ch/atlas-opendata/samples/2020/exactly2lep/Data/'+filename\n",
Expand Down Expand Up @@ -188,7 +199,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -199,7 +210,7 @@
" # get the energy of 0th lepton by lep_E[0]\n",
"\n",
" # sumE = sum of energy\n",
" sumE = \n",
" sumE = 0 # Replace the 0 with your solution\n",
" \n",
" px_0 = lep_pt[0]*np.cos(lep_phi[0]) # x-momentum of 0th lepton\n",
" px_1 = lep_pt[1]*np.cos(lep_phi[1]) # x-momentum of 1st lepton\n",
Expand All @@ -209,19 +220,19 @@
" pz_1 = lep_pt[1]*np.sinh(lep_eta[1]) # z-momentum of 1st lepton\n",
" \n",
" # sumpx = sum of x-momenta\n",
" sumpx = \n",
" sumpx = 0 # Replace the 0 with your solution\n",
" \n",
" # sumpy = sum of y-momenta\n",
" sumpy = \n",
" sumpy = 0 # Replace the 0 with your solution\n",
" \n",
" # sumpz = sum of z-momenta\n",
" sumpz = \n",
" sumpz = 0 # Replace the 0 with your solution\n",
" \n",
" # sump = magnitude of total momentum vector. Remember it's a vector!\n",
" sump = \n",
" sump = 0 # Replace the 0 with your solution\n",
" \n",
" # Mll = invariant mass from M^2 = E^2 - p^2\n",
" Mll = \n",
" Mll = 0 # Replace the 0 with your solution\n",
" \n",
" return Mll/1000 # divide by 1000 to go from MeV to GeV"
]
Expand All @@ -242,7 +253,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -257,7 +268,7 @@
" # calculation of 2-lepton invariant mass \n",
" data['mll'] = np.vectorize(calc_mll)(data.lep_pt, data.lep_eta, data.lep_phi, data.lep_E)\n",
"\n",
" data_all = data_all.append(data) # append dataframe from this batch to the dataframe for the whole sample\n"
" data_all = pd.concat([data_all, data], ignore_index=True) # append dataframe from this batch to the dataframe for the whole sample\n"
]
},
{
Expand All @@ -283,11 +294,30 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {
"scrolled": true
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_2523/3936450928.py:25: UserWarning: Data has no positive values, and therefore cannot be log-scaled.\n",
" plt.yscale('log')\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGwCAYAAACgi8/jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhG0lEQVR4nO3deXDU9f3H8dcmIUsg7KIgOSDhVlyFyBEwWKtIbEAqigeI0CYBbW1RCalFLCPY8UDH0aFO0zK1AiooaDlaqYIYOYxSEDCoRTk0A5ErXMkmXIHk8/vDYX+uQRs2xzd89vmY2Rnz/W523/uZ1X363e9uXMYYIwAAAAtFOD0AAABAQyF0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGCtKKcHcFp1dbX27t2rVq1ayeVyOT0OAACoBWOMysvLlZiYqIiIHz5uE/ahs3fvXiUlJTk9BgAACEFxcbE6dOjwg/vDPnRatWol6duF8ng8Dk8DAABqw+/3KykpKfA6/kPCPnTOvl3l8XgIHQAALjD/67QTTkYGAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1rIidEaMGKGLLrpId9xxh9OjAACAJsSK0Jk4caJeeeUVp8cAAABNjBWhc/311//PP+oFAADCj+Ohs3btWt18881KTEyUy+XS0qVLa1wnLy9PnTp1UvPmzTVgwABt2LCh8QcFAAAXHMdD59ixY0pJSVFeXt459y9cuFC5ubmaPn26Nm/erJSUFGVkZKikpCSk+zt16pT8fn/QBQAA2Mnx0Bk6dKieeOIJjRgx4pz7n3/+ed17773Kzs6Wz+fTrFmz1KJFC82ePTuk+5sxY4a8Xm/gkpSUVJfxAQBAE+Z46PyYyspKbdq0Senp6YFtERERSk9P17p160K6zUceeURlZWWBS3FxcX2NCwAAmpgopwf4MYcOHVJVVZXi4uKCtsfFxenLL78M/Jyenq4tW7bo2LFj6tChg958802lpaWd8zbdbrfcbneDzg0AAJqGJh06tfXee+85PQIAAGiCmvRbV23btlVkZKQOHDgQtP3AgQOKj493aCoAAHChaNKhEx0drb59+yo/Pz+wrbq6Wvn5+T/41hQAAMBZjr91VVFRoZ07dwZ+LioqUmFhoS6++GIlJycrNzdXmZmZ6tevn/r376+ZM2fq2LFjys7OdnBqAABwIXA8dDZu3KhBgwYFfs7NzZUkZWZmau7cuRo1apQOHjyoadOmaf/+/brqqqu0fPnyGicoAwAAfJ/LGGOcHsJJfr9fXq9XZWVl8ng8To8DAABqobav3036HB0AAIC6IHQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLXCNnTy8vLk8/mUmprq9CgAAKCB8D06fI8OAAAXHL5HBwAAhD1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1grb0MnLy5PP51NqaqrTowAAgAbiMsYYp4dwkt/vl9frVVlZmTwej9PjAACAWqjt63fYHtEBAAD2I3QAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLXCNnTy8vLk8/mUmprq9CgAAKCBuIwxxukhnOT3++X1elVWViaPx+P0OAAAoBZq+/odtkd0AACA/QgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYK29DJy8uTz+dTamqq06MAAIAG4jLGGKeHcJLf75fX61VZWZk8Ho/T4wAAgFqo7et32B7RAQAA9iN0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1grb0MnLy5PP51NqaqrTowAAgAbiMsYYp4dwkt/vl9frVVlZmTwej9PjAACAWqjt63fYHtEBAAD2I3QAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYK2wDZ28vDz5fD6lpqY6PQoAAGggLmOMcXoIJ/n9fnm9XpWVlcnj8Tg9DgAAqIXavn6H7REdAABgP0IHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAteoldKqqqlRYWKijR4/Wx80BAADUi5BCJycnRy+99JKkbyPnuuuuU58+fZSUlKTVq1fX53wAAAAhCyl0/vGPfyglJUWS9NZbb6moqEhffvmlJk2apKlTp9brgAAAAKEKKXQOHTqk+Ph4SdLbb7+tO++8U5deeqnGjRunzz77rF4HBAAACFVIoRMXF6etW7eqqqpKy5cv14033ihJOn78uCIjI+t1QAAAgFBFhfJL2dnZGjlypBISEuRyuZSeni5JWr9+vXr06FGvAwIAAIQqpNB57LHHdOWVV6q4uFh33nmn3G63JCkyMlJTpkyp1wEBAABCFVLovPLKKxo1alQgcM4aPXq0FixYUC+DAQAA1JXLGGPO95ciIyO1b98+tWvXLmj74cOH1a5dO1VVVdXbgA3N7/fL6/WqrKxMHo/H6XEAAEAt1Pb1O6STkY0xcrlcNbZ/88038nq9odwkAABAvTuvt6569+4tl8sll8ulwYMHKyrq/3+9qqpKRUVFGjJkSL0PCQAAEIrzCp1bb71VklRYWKiMjAzFxsYG9kVHR6tTp066/fbb63VAAACAUJ1X6EyfPl2S1KlTJ40aNUrNmzdvkKEAAADqQ0ifusrMzJQkVVZWqqSkRNXV1UH7k5OT6z4ZAABAHYUUOjt27NC4ceP00UcfBW0/e5LyhfSpKwAAYK+QQicrK0tRUVFatmxZ4NuRAQAAmpqQQqewsFCbNm3izz0AAIAmLaTv0fH5fDp06FB9zwIAAFCvQgqdZ555RpMnT9bq1at1+PBh+f3+oAsAAEBTENKfgIiI+LaPvn9uzoV4MjJ/AgIAgAtPbV+/QzpHZ9WqVSEPBgAA0FhCCp3rrruuvucAAACodyGdoyNJH3zwgcaOHauBAwdqz549kqRXX31VBQUF9TYcAABAXYQUOosWLVJGRoZiYmK0efNmnTp1SpJUVlamp556ql4HBAAACFVIofPEE09o1qxZevHFF9WsWbPA9muuuUabN2+ut+EAAADqIqTQ2bZtm37605/W2O71elVaWlrXmQAAAOpFSKETHx+vnTt31theUFCgLl261HkoAACA+hBS6Nx7772aOHGi1q9fL5fLpb1792r+/Pl66KGH9Jvf/Ka+ZwQAAAhJSB8vnzJliqqrqzV48GAdP35cP/3pT+V2u/XQQw/pgQceqO8ZG0ReXp7y8vIuqC83BAAA5yekb0Y+q7KyUjt37lRFRYV8Pp9iY2Prc7ZGwTcjAwBw4ant63dIb13NmzdPx48fV3R0tHw+n/r3739BRg4AALBbSKEzadIktWvXTnfffbfefvtt3v4BAABNUkihs2/fPi1YsEAul0sjR45UQkKCJkyYoI8++qi+5wMAAAhZnc7RkaTjx49ryZIleu211/Tee++pQ4cO+uqrr+prvgbHOToAAFx4GvSvl39XixYtlJGRoaNHj2rXrl364osv6nqTAAAA9SLkP+p5/PhxzZ8/XzfddJPat2+vmTNnasSIEfrvf/9bn/MBAACELKQjOnfddZeWLVumFi1aaOTIkXr00UeVlpZW37MBAADUSUihExkZqTfeeEMZGRmKjIys75kAAADqxXm9dXXTTTeprKws8JbVs88+G/RHPA8fPiyfz1ffMwIAAITkvEJnxYoVOnXqVODnp556SkeOHAn8fObMGW3btq3+pgMAAKiD8wqd738SvY6fTAcAAGhQIX/qCgAAoKk7r9BxuVxyuVw1tgEAADRF5/WpK2OMsrKy5Ha7JUknT57Ufffdp5YtW0pS0Pk7AAAATjuv0MnMzAz6eezYsTWu88tf/rJuEwEAANST8wqdOXPmNNQcAAAA9Y6TkQEAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtcI2dPLy8uTz+ZSamur0KAAAoIG4jDHG6SGc5Pf75fV6VVZWJo/H4/Q4AACgFmr7+h22R3QAAID9CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLStCZ9myZbrsssvUvXt3/f3vf3d6HAAA0EREOT1AXZ05c0a5ublatWqVvF6v+vbtqxEjRqhNmzZOjwYAABx2wR/R2bBhg6644gq1b99esbGxGjp0qN59912nxwIAAE2A46Gzdu1a3XzzzUpMTJTL5dLSpUtrXCcvL0+dOnVS8+bNNWDAAG3YsCGwb+/evWrfvn3g5/bt22vPnj2NMToAAGjiHA+dY8eOKSUlRXl5eefcv3DhQuXm5mr69OnavHmzUlJSlJGRoZKSkpDu79SpU/L7/UEXAABgJ8dDZ+jQoXriiSc0YsSIc+5//vnnde+99yo7O1s+n0+zZs1SixYtNHv2bElSYmJi0BGcPXv2KDEx8Qfvb8aMGfJ6vYFLUlJS/T4gAADQZDgeOj+msrJSmzZtUnp6emBbRESE0tPTtW7dOklS//799fnnn2vPnj2qqKjQO++8o4yMjB+8zUceeURlZWWBS3FxcYM/DgAA4Iwm/amrQ4cOqaqqSnFxcUHb4+Li9OWXX0qSoqKi9Nxzz2nQoEGqrq7W5MmTf/QTV263W263u0HnBgAATUOTDp3aGj58uIYPH+70GAAAoIlp0m9dtW3bVpGRkTpw4EDQ9gMHDig+Pt6hqQAAwIWiSYdOdHS0+vbtq/z8/MC26upq5efnKy0tzcHJAADAhcDxt64qKiq0c+fOwM9FRUUqLCzUxRdfrOTkZOXm5iozM1P9+vVT//79NXPmTB07dkzZ2dkOTg0AAC4EjofOxo0bNWjQoMDPubm5kqTMzEzNnTtXo0aN0sGDBzVt2jTt379fV111lZYvX17jBGUAAIDvcxljjNNDOMnv98vr9aqsrEwej8fpcQAAQC3U9vW7SZ+jAwAAUBeEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwVtiGTl5ennw+n1JTU50eBQAANJCw/x6dsrIytW7dWsXFxXyPDgAAFwi/36+kpCSVlpbK6/X+4PUc/2Zkp5WXl0uSkpKSHJ4EAACcr/Ly8h8NnbA/olNdXa29e/eqVatWcrlcTo8T5GytcrQpGOtSE2tybqxLTaxJTazJuTX1dTHGqLy8XImJiYqI+OEzccL+iE5ERIQ6dOjg9Bg/yuPxNMknmdNYl5pYk3NjXWpiTWpiTc6tKa/Ljx3JOStsT0YGAAD2I3QAAIC1CJ0mzO12a/r06XK73U6P0qSwLjWxJufGutTEmtTEmpybLesS9icjAwAAe3FEBwAAWIvQAQAA1iJ0AACAtQgdAABgLUKniXn66aflcrmUk5MT2Hby5ElNmDBBbdq0UWxsrG6//XYdOHDAuSEbwWOPPSaXyxV06dGjR2B/OK6JJO3Zs0djx45VmzZtFBMTo549e2rjxo2B/cYYTZs2TQkJCYqJiVF6erp27Njh4MQNr1OnTjWeKy6XSxMmTJAUns+VqqoqPfroo+rcubNiYmLUtWtXPf744/ruZ0/C8blSXl6unJwcdezYUTExMRo4cKA+/vjjwP5wWJO1a9fq5ptvVmJiolwul5YuXRq0vzZrcOTIEY0ZM0Yej0etW7fW+PHjVVFR0YiP4jwZNBkbNmwwnTp1Mr169TITJ04MbL/vvvtMUlKSyc/PNxs3bjRXX321GThwoHODNoLp06ebK664wuzbty9wOXjwYGB/OK7JkSNHTMeOHU1WVpZZv369+frrr82KFSvMzp07A9d5+umnjdfrNUuXLjVbtmwxw4cPN507dzYnTpxwcPKGVVJSEvQ8WblypZFkVq1aZYwJz+fKk08+adq0aWOWLVtmioqKzJtvvmliY2PNn/70p8B1wvG5MnLkSOPz+cyaNWvMjh07zPTp043H4zHffPONMSY81uTtt982U6dONYsXLzaSzJIlS4L212YNhgwZYlJSUsx//vMf88EHH5hu3bqZ0aNHN/IjqT1Cp4koLy833bt3NytXrjTXXXddIHRKS0tNs2bNzJtvvhm47hdffGEkmXXr1jk0bcObPn26SUlJOee+cF2Thx9+2PzkJz/5wf3V1dUmPj7ePPvss4FtpaWlxu12m9dff70xRmwSJk6caLp27Wqqq6vD9rkybNgwM27cuKBtt912mxkzZowxJjyfK8ePHzeRkZFm2bJlQdv79Oljpk6dGpZr8v3Qqc0abN261UgyH3/8ceA677zzjnG5XGbPnj2NNvv54K2rJmLChAkaNmyY0tPTg7Zv2rRJp0+fDtreo0cPJScna926dY09ZqPasWOHEhMT1aVLF40ZM0a7d++WFL5r8q9//Uv9+vXTnXfeqXbt2ql379568cUXA/uLioq0f//+oHXxer0aMGCA1evyXZWVlZo3b57GjRsnl8sVts+VgQMHKj8/X9u3b5ckbdmyRQUFBRo6dKik8HyunDlzRlVVVWrevHnQ9piYGBUUFITlmnxfbdZg3bp1at26tfr16xe4Tnp6uiIiIrR+/fpGn7k2wv6PejYFCxYs0ObNm4PeKz5r//79io6OVuvWrYO2x8XFaf/+/Y00YeMbMGCA5s6dq8suu0z79u3TH//4R1177bX6/PPPw3ZNvv76a/31r39Vbm6u/vCHP+jjjz/Wgw8+qOjoaGVmZgYee1xcXNDv2b4u37V06VKVlpYqKytLUvj++zNlyhT5/X716NFDkZGRqqqq0pNPPqkxY8ZIUlg+V1q1aqW0tDQ9/vjjuvzyyxUXF6fXX39d69atU7du3cJyTb6vNmuwf/9+tWvXLmh/VFSULr744ia7ToSOw4qLizVx4kStXLmyxv9phLOz/+cpSb169dKAAQPUsWNHvfHGG4qJiXFwMudUV1erX79+euqppyRJvXv31ueff65Zs2YpMzPT4emahpdeeklDhw5VYmKi06M46o033tD8+fP12muv6YorrlBhYaFycnKUmJgY1s+VV199VePGjVP79u0VGRmpPn36aPTo0dq0aZPTo6EB8daVwzZt2qSSkhL16dNHUVFRioqK0po1a/TCCy8oKipKcXFxqqysVGlpadDvHThwQPHx8c4M7YDWrVvr0ksv1c6dOxUfHx+Wa5KQkCCfzxe07fLLLw+8pXf2sX//E0W2r8tZu3bt0nvvvad77rknsC1cnyu///3vNWXKFN11113q2bOnfvGLX2jSpEmaMWOGpPB9rnTt2lVr1qxRRUWFiouLtWHDBp0+fVpdunQJ2zX5rtqsQXx8vEpKSoL2nzlzRkeOHGmy60ToOGzw4MH67LPPVFhYGLj069dPY8aMCfxzs2bNlJ+fH/idbdu2affu3UpLS3Nw8sZVUVGhr776SgkJCerbt29Yrsk111yjbdu2BW3bvn27OnbsKEnq3Lmz4uPjg9bF7/dr/fr1Vq/LWXPmzFG7du00bNiwwLZwfa4cP35cERHB/3mPjIxUdXW1JJ4rLVu2VEJCgo4ePaoVK1bolltuCfs1kWr3vEhLS1NpaWnQUbD3339f1dXVGjBgQKPPXCtOnw2Nmr77qStjvv14bHJysnn//ffNxo0bTVpamklLS3NuwEbwu9/9zqxevdoUFRWZDz/80KSnp5u2bduakpISY0x4rsmGDRtMVFSUefLJJ82OHTvM/PnzTYsWLcy8efMC13n66adN69atzT//+U/z6aefmltuucW6j8eeS1VVlUlOTjYPP/xwjX3h+FzJzMw07du3D3y8fPHixaZt27Zm8uTJgeuE43Nl+fLl5p133jFff/21effdd01KSooZMGCAqaysNMaEx5qUl5ebTz75xHzyySdGknn++efNJ598Ynbt2mWMqd0aDBkyxPTu3dusX7/eFBQUmO7du/Pxcpyf74fOiRMnzG9/+1tz0UUXmRYtWpgRI0aYffv2OTdgIxg1apRJSEgw0dHRpn379mbUqFFB3xcTjmtijDFvvfWWufLKK43b7TY9evQwf/vb34L2V1dXm0cffdTExcUZt9ttBg8ebLZt2+bQtI1nxYoVRtI5H2s4Plf8fr+ZOHGiSU5ONs2bNzddunQxU6dONadOnQpcJxyfKwsXLjRdunQx0dHRJj4+3kyYMMGUlpYG9ofDmqxatcpIqnHJzMw0xtRuDQ4fPmxGjx5tYmNjjcfjMdnZ2aa8vNyBR1M7LmO+81WZAAAAFuEcHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0ATc7111+vnJycwM+dOnXSzJkzf/D6WVlZcrlccrlcWrp0aYPP90NWr14dmOPWW291bA4A/4/QAdDgzobIfffdV2PfhAkT5HK5lJWVVaf7GDJkiPbt26ehQ4cGbV+1apV+/vOf65JLLlHz5s3VtWtXjRo1SmvXrq31bffs2fOcs0vSq6++KrfbrUOHDmngwIHat2+fRo4cWafHAqD+EDoAGkVSUpIWLFigEydOBLadPHlSr732mpKTk+t8+263W/Hx8XK73YFtf/nLXzR48GC1adNGCxcu1LZt27RkyRINHDhQkyZNqvVtjx8/vsbsZ82ZM0fDhw9X27ZtFR0drfj4eMXExNT58QCoH4QOgEbRp08fJSUlafHixYFtixcvVnJysnr37l3v97d7927l5OQoJydHL7/8sm644QZ17NhRvXr10sSJE7Vx48ag6xcUFOjaa69VTEyMkpKS9OCDD+rYsWOSpLFjx+rEiRNatGhR0O8UFRVp9erVGj9+fL3PD6B+EDoAGs24ceM0Z86cwM+zZ89WdnZ2g9zXokWLdPr0aU2ePPmc+10uV+Cfv/rqKw0ZMkS33367Pv30Uy1cuFAFBQW6//77JUlt27bVLbfcotmzZwfdxty5c9WhQwf97Gc/a5DHAKDuCB0AjWbs2LEqKCjQrl27tGvXLn344YcaO3Zsg9zX9u3b5fF4FB8fH9i2aNEixcbGBi6fffaZJGnGjBkaM2aMcnJy1L17dw0cOFAvvPCCXnnlFZ08eVLSt29frV69WkVFRZIkY4xefvllZWZmKiKC/5QCTRX/dgJoNJdccomGDRumuXPnas6cORo2bJjatm3bYPf33aM2kpSRkaHCwkL9+9//1rFjx1RVVSVJ2rJli+bOnRsUQRkZGaqurg6EzY033qgOHToEjkjl5+dr9+7dDXZECkD9iHJ6AADhZdy4cYG3hPLy8hrsfrp3766ysjLt378/cFQnNjZW3bp1U1RU8H/6Kioq9Otf/1oPPvhgjds5e6J0RESEsrKy9PLLL+uxxx7TnDlzNGjQIHXp0qXBHgOAuuOIDoBGNWTIEFVWVur06dPKyMhosPu544471KxZMz3zzDP/87p9+vTR1q1b1a1btxqX6OjowPWys7NVXFysxYsXa8mSJZyEDFwAOKIDoFFFRkbqiy++CPxzQ0lOTtZzzz2niRMn6siRI8rKylLnzp115MgRzZs3L+j+H374YV199dW6//77dc8996hly5baunWrVq5cqT//+c+B2+zcubNuuOEG/epXv5Lb7dZtt93WYPMDqB8c0QHQ6DwejzweT4PfzwMPPKB3331XBw8e1B133KHu3bvrpptuUlFRkZYvX66ePXtKknr16qU1a9Zo+/btuvbaa9W7d29NmzZNiYmJNW5z/PjxOnr0qO6++241b968wR8DgLpxGWOM00MAQF1kZWWptLTU0T//8F1NbR4gnHFEB4AVli1bptjYWC1btsyxGT744APFxsZq/vz5js0AIBhHdABc8EpKSuT3+yVJCQkJatmypSNznDhxQnv27JH07Se8vvsdPgCcQegAAABr8dYVAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFr/B6HXXuq95hKPAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bin_edges = np.arange(start=35, # The interval includes this value\n",
" stop=110, # The interval doesn't include this value\n",
Expand Down Expand Up @@ -405,7 +435,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
Expand All @@ -419,7 +449,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
"version": "3.10.14"
}
},
"nbformat": 4,
Expand Down
Loading
Loading