-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add training scripts for unet and unetr
- Loading branch information
Showing
3 changed files
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import argparse | ||
|
||
import torch | ||
|
||
from torch_em.transform.label import PerObjectDistanceTransform | ||
from torch_em.data.datasets.light_microscopy import get_livecell_loader | ||
|
||
import micro_sam.training as sam_training | ||
|
||
|
||
def get_loaders(path, patch_shape, for_sam=False): | ||
kwargs = { | ||
"label_transform": PerObjectDistanceTransform( | ||
distances=True, | ||
boundary_distances=True, | ||
directed_distances=False, | ||
foreground=True, | ||
min_size=25, | ||
), | ||
"label_dtype": torch.float32, | ||
"num_workers": 16, | ||
"patch_shape": patch_shape | ||
} | ||
|
||
if for_sam: | ||
kwargs["raw_transform"] = sam_training.identity | ||
|
||
train_loader = get_livecell_loader(path=path, split="train", batch_size=2, **kwargs) | ||
val_loader = get_livecell_loader(path=path, split="val", batch_size=1, **kwargs) | ||
|
||
return train_loader, val_loader | ||
|
||
|
||
def get_default_arguments(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-i", "--input_path", type=str, default="/scratch/projects/nim00007/sam/data/livecell") | ||
parser.add_argument("-s", "--save_root", type=str, default=None) | ||
parser.add_argument("-p", "--phase", type=str, default=None, choices=["train", "predict", "evaluate"]) | ||
parser.add_argument("--iterations", type=str, default=1e5) | ||
parser.add_argument("--sam", action="store_true") | ||
args = parser.parse_args() | ||
return args |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
from common import get_loaders, get_default_arguments | ||
|
||
import torch | ||
|
||
from torch_em.model import UNet2d | ||
from torch_em.loss import DiceBasedDistanceLoss | ||
from torch_em import default_segmentation_trainer | ||
from torch_em.model.unetr import SingleDeconv2DBlock | ||
|
||
|
||
def run_training_for_livecell(path, save_root, iterations): | ||
# all the necessary stuff for training | ||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
patch_shape = (512, 512) | ||
train_loader, val_loader = get_loaders(path=path, patch_shape=patch_shape) | ||
loss = DiceBasedDistanceLoss(mask_distances_in_bg=True) | ||
|
||
model = UNet2d( | ||
in_channels=1, | ||
out_channels=3, | ||
initial_features=64, | ||
final_activation="Sigmoid", | ||
sampler_impl=SingleDeconv2DBlock, | ||
) | ||
model.to(device) | ||
|
||
trainer = default_segmentation_trainer( | ||
name="livecell-unet", | ||
model=model, | ||
train_loader=train_loader, | ||
val_loader=val_loader, | ||
device=device, | ||
learning_rate=1e-4, | ||
loss=loss, | ||
metric=loss, | ||
log_image_interval=50, | ||
save_root=save_root, | ||
compile_model=False, | ||
mixed_precision=True, | ||
scheduler_kwargs={"mode": "min", "factor": 0.9, "patience": 5} | ||
) | ||
|
||
trainer.fit(int(iterations)) | ||
|
||
|
||
def main(args): | ||
if args.phase == "train": | ||
run_training_for_livecell(path=args.input_path, save_root=args.save_root, iterations=args.iterations) | ||
|
||
else: | ||
raise NotImplementedError | ||
|
||
|
||
if __name__ == "__main__": | ||
args = get_default_arguments() | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
from common import get_loaders, get_default_arguments | ||
|
||
import torch | ||
|
||
from torch_em.model import UNETR | ||
from torch_em.loss import DiceBasedDistanceLoss | ||
from torch_em import default_segmentation_trainer | ||
|
||
|
||
def run_training_for_livecell(path, save_root, iterations, for_sam): | ||
# all the necessary stuff for training | ||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
patch_shape = (512, 512) | ||
train_loader, val_loader = get_loaders(path=path, patch_shape=patch_shape, for_sam=for_sam) | ||
loss = DiceBasedDistanceLoss(mask_distances_in_bg=True) | ||
checkpoint_path = "/scratch-grete/share/cidas/cca/models/sam/sam_vit_l_0b3195.pth" if for_sam else None | ||
|
||
model = UNETR( | ||
encoder="vit_l", | ||
out_channels=3, | ||
final_activation="Sigmoid", | ||
use_skip_connection=False, | ||
use_sam_stats=for_sam, | ||
encoder_checkpoint=checkpoint_path, | ||
) | ||
model.to(device) | ||
|
||
trainer = default_segmentation_trainer( | ||
name="livecell-unetr-sam" if for_sam else "livecell-unetr", | ||
model=model, | ||
train_loader=train_loader, | ||
val_loader=val_loader, | ||
device=device, | ||
learning_rate=1e-4, | ||
loss=loss, | ||
metric=loss, | ||
log_image_interval=50, | ||
save_root=save_root, | ||
compile_model=False, | ||
mixed_precision=True, | ||
scheduler_kwargs={"mode": "min", "factor": 0.9, "patience": 5} | ||
) | ||
|
||
trainer.fit(int(iterations)) | ||
|
||
|
||
def main(args): | ||
if args.phase == "train": | ||
run_training_for_livecell( | ||
path=args.input_path, | ||
save_root=args.save_root, | ||
iterations=args.iterations, | ||
for_sam=args.sam, | ||
) | ||
|
||
else: | ||
raise NotImplementedError | ||
|
||
|
||
if __name__ == "__main__": | ||
args = get_default_arguments() | ||
main(args) |