Skip to content

Release 0.3.0

Stefan Kasberger edited this page Jun 27, 2020 · 1 revision

Purpose

  • Guarantee good working foundation for Dataverse data models

Scope

  • models.py
    • Tests
    • JSON Schemas
  • fix bugs
  • Requested API endpoints

Timeplan

  • Dev: xx days
  • Testing: xx days
  • Docs: xx days
  • Launch: DD.MM.YYY
  • Follow Ups: xx days

TODO: Development

All issues

Research

  • Which dictionaries have which dependencies? Implement results in JSON schemas.
  • How to documement JSON Schemaswie man JSON Schemas dokumentiert bzw. generell Datenstrukturen (dict()).
  • Work out test strategy and implement results

Release Notes

Bug fixes

  • pass format in export_metadata functions (close #34)
  • fix attribute output errors of Dataverse()
    • contactEmail error: in import_metadata the dataverse contact data was not stored correctly and also in the output creation with dict() problems occured -> re-structure and re-factor the attribute lists and functions with checked attributes. and add tests to it.
  • corrected malfunctioning data{} attribute in examples docstring of Dataverse. was not a flat dict, which was used for Datavers.set(data).
  • the dicts from Dataset() had an error. were not created in dict()

Improvements

  • Import dataset with existing PIDs
  • re-factor attributes management in dataverse: not default values anymore. attribute gets created if passed to set(). dict() and is_valid() always check, if attribute is there and if it is set.
    • etwas genauer erklären, was die änderung für den user bedeutet: vor allem, für set() nutzung. beispiele zeigen, anstatt nur beschreibung.
  • Storing Dataverse Software version when initializing Api connection.
  • add parameters to read_csv_to_dict()

Launch

Issues Closed

Activities

Follow Ups

  • Write blog post for aussda.at, SSHOC website. Ask Dataverse.org
Clone this wiki locally