-
Notifications
You must be signed in to change notification settings - Fork 200
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into table-transformer-enabling
- Loading branch information
Showing
21 changed files
with
917 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
<!--- | ||
Copyright 2024 The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--> | ||
|
||
# Object Detection Example | ||
|
||
This folder contains an example script which demonstrates the usage of DETR to run object detection task on Gaudi platform. | ||
|
||
## Single-HPU inference | ||
|
||
```bash | ||
python3 run_example.py \ | ||
--model_name_or_path facebook/detr-resnet-101 \ | ||
--image_path "http://images.cocodataset.org/val2017/000000039769.jpg" \ | ||
--use_hpu_graphs \ | ||
--bf16 \ | ||
--print_result | ||
``` | ||
|
||
Models that have been validated: | ||
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) | ||
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
#!/usr/bin/env python | ||
# coding=utf-8 | ||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
|
||
# Copied from https://huggingface.co/docs/transformers/model_doc/owlvit | ||
|
||
import argparse | ||
import time | ||
|
||
import habana_frameworks.torch as ht | ||
import requests | ||
import torch | ||
from PIL import Image | ||
from transformers import AutoProcessor, DetrForObjectDetection | ||
|
||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--model_name_or_path", | ||
default="facebook/detr-resnet-101", | ||
type=str, | ||
help="Path of the pre-trained model", | ||
) | ||
parser.add_argument( | ||
"--image_path", | ||
default="http://images.cocodataset.org/val2017/000000039769.jpg", | ||
type=str, | ||
help='Path of the input image. Should be a single string (eg: --image_path "URL")', | ||
) | ||
parser.add_argument( | ||
"--use_hpu_graphs", | ||
action="store_true", | ||
help="Whether to use HPU graphs or not. Using HPU graphs should give better latencies.", | ||
) | ||
parser.add_argument( | ||
"--bf16", | ||
action="store_true", | ||
help="Whether to use bf16 precision for object detection.", | ||
) | ||
parser.add_argument( | ||
"--detect_threshold", | ||
type=float, | ||
default=0.9, | ||
help="Detection threshold score (otherwise dismissed)", | ||
) | ||
parser.add_argument( | ||
"--print_result", | ||
action="store_true", | ||
help="Whether to print the detection results.", | ||
) | ||
|
||
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations for benchmarking.") | ||
parser.add_argument( | ||
"--n_iterations", type=int, default=10, help="Number of inference iterations for benchmarking." | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
adapt_transformers_to_gaudi() | ||
|
||
# you can specify the revision tag if you don't want the timm dependency | ||
processor = AutoProcessor.from_pretrained("facebook/detr-resnet-101", revision="no_timm") | ||
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101", revision="no_timm") | ||
|
||
image = Image.open(requests.get(args.image_path, stream=True).raw) | ||
|
||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
model.to("hpu") | ||
|
||
if args.use_hpu_graphs: | ||
model = ht.hpu.wrap_in_hpu_graph(model) | ||
|
||
autocast = torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=args.bf16) | ||
|
||
with torch.no_grad(), autocast: | ||
for i in range(args.warmup): | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
outputs = model(**inputs) | ||
torch.hpu.synchronize() | ||
|
||
total_model_time = 0 | ||
for i in range(args.n_iterations): | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
model_start_time = time.time() | ||
outputs = model(**inputs) | ||
torch.hpu.synchronize() | ||
model_end_time = time.time() | ||
total_model_time = total_model_time + (model_end_time - model_start_time) | ||
|
||
if args.print_result: | ||
target_sizes = torch.tensor([image.size[::-1]]) | ||
results = processor.post_process_object_detection( | ||
outputs, target_sizes=target_sizes, threshold=args.detect_threshold | ||
)[0] | ||
|
||
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | ||
box = [round(i, 2) for i in box.tolist()] | ||
print( | ||
f"Detected {model.config.id2label[label.item()]} with confidence " | ||
f"{round(score.item(), 3)} at location {box}" | ||
) | ||
|
||
tot_stat = f"Total latency (ms): {str(total_model_time * 1000)} (for n_iterations={str(args.n_iterations)}) " | ||
avg_stat = f"Average latency (ms): {str(total_model_time * 1000 / args.n_iterations)} (per iteration) " | ||
separator = "-" * max(len(tot_stat), len(avg_stat)) | ||
print() | ||
print("Stats:") | ||
print(separator) | ||
print(tot_stat) | ||
print(avg_stat) | ||
print(separator) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
113 changes: 113 additions & 0 deletions
113
examples/stable-diffusion/unconditional_image_generation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import argparse | ||
import logging | ||
import sys | ||
|
||
from diffusers import DDPMScheduler | ||
from transformers.utils import check_min_version | ||
|
||
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiDDPMPipeline | ||
from optimum.habana.transformers.gaudi_configuration import GaudiConfig | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
try: | ||
from optimum.habana.utils import check_optimum_habana_min_version | ||
except ImportError: | ||
|
||
def check_optimum_habana_min_version(*a, **b): | ||
return () | ||
|
||
|
||
check_min_version("4.37.0") | ||
check_optimum_habana_min_version("1.10.4") | ||
|
||
# Setup logging | ||
logging.basicConfig( | ||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | ||
datefmt="%m/%d/%Y %H:%M:%S", | ||
handlers=[logging.StreamHandler(sys.stdout)], | ||
) | ||
logger.setLevel(logging.INFO) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--model_name_or_path", | ||
default="google/ddpm-ema-celebahq-256", | ||
type=str, | ||
help="Path of the pre-trained unconditional image generation model", | ||
) | ||
parser.add_argument( | ||
"--batch_size", | ||
type=int, | ||
default=16, | ||
help="Batch size for the task.", | ||
) | ||
parser.add_argument( | ||
"--num_inference_steps", type=int, default=1000, help="Number of inference steps for the denoising UNet." | ||
) | ||
parser.add_argument( | ||
"--use_gaudi_ddim_scheduler", | ||
action="store_true", | ||
help="Whether to use the Gaudi optimized DDIM scheduler. The default is DDPMScheduler", | ||
) | ||
parser.add_argument( | ||
"--use_habana", | ||
action="store_true", | ||
help="Whether to use HPU for computations.", | ||
) | ||
parser.add_argument( | ||
"--use_hpu_graphs", | ||
action="store_true", | ||
help="Whether to use HPU graphs or not. Using HPU graphs should give better latencies.", | ||
) | ||
parser.add_argument( | ||
"--bf16", | ||
action="store_true", | ||
help="Whether to use bf16 precision for classification.", | ||
) | ||
parser.add_argument( | ||
"--save_outputs", | ||
action="store_true", | ||
help="Whether to save the generated images to jpg.", | ||
) | ||
parser.add_argument( | ||
"--output_dir", | ||
type=str, | ||
default="/tmp/", | ||
help="Where to save the generated images. The default is DDPMScheduler.", | ||
) | ||
|
||
args = parser.parse_args() | ||
model_name = args.model_name_or_path | ||
|
||
if args.use_gaudi_ddim_scheduler: | ||
scheduler = GaudiDDIMScheduler.from_pretrained(model_name) | ||
else: | ||
scheduler = DDPMScheduler.from_pretrained(model_name) | ||
|
||
gaudi_kwargs = { | ||
"use_torch_autocast": args.bf16, | ||
} | ||
gaudi_config = GaudiConfig(**gaudi_kwargs) | ||
|
||
kwargs = { | ||
"scheduler": scheduler, | ||
"use_habana": args.use_habana, | ||
"use_hpu_graphs": args.use_hpu_graphs, | ||
"gaudi_config": gaudi_config, | ||
} | ||
|
||
pipeline = GaudiDDPMPipeline.from_pretrained(model_name, **kwargs) | ||
output = pipeline(batch_size=args.batch_size, num_inference_steps=args.num_inference_steps) | ||
|
||
if args.output_dir: | ||
logger.info(f"Generating outputs to {args.output_dir}") | ||
for i in range(len(output.images)): | ||
output.images[i].save(args.output_dir + "unconditional_image_" + str(i) + ".jpg") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from .unet_2d import gaudi_unet_2d_model_forward | ||
from .unet_2d_condition import gaudi_unet_2d_condition_model_forward |
Oops, something went wrong.