Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add center_point_box=1 support in NonMaxSuppression. #3976

Merged
merged 1 commit into from
Jan 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 45 additions & 4 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3697,11 +3697,9 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
binder.tensorResultType(resultType))
return failure();

// TODO: Add support for non-zero center_point_box value.
if (centerPointBox != 0)
if (centerPointBox != 0 && centerPointBox != 1)
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: expected center_point_box "
"attribute value to be 0");
binder.op, "expected center_point_box attribute to be 0 or 1");

// TODO: Support multiple batches and classes
// Squeeze the boxes and scores tensor.
Expand All @@ -3727,6 +3725,49 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
"failed to squeeze scores tensor");
boxes = squeezedBoxes.value();
scores = squeezedScores.value();
if (centerPointBox == 1) {
// When center_point_box is 1, the box data is supplied as
// [[x_center, y_center, width, height], ...]. Slice it to
// [[x_center, y_center], ...] and [[width, height], ...],
// calculate the [[x1, y1], ...] and [[x2, y2], ...], and concatnate
// to [[x1, y1, x2, y2], ...]
auto boxesTensorType =
dyn_cast<Torch::ValueTensorType>(boxes.getType());
Value const0 = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value const1 = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value const2 = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(2));
Value const4 = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(4));
Value const2F = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(2.0));

// extract scaled ranges for regions of interest
auto sliceShape = SmallVector<int64_t>{Torch::kUnknownSize, 2};
auto sliceTensorType = rewriter.getType<Torch::ValueTensorType>(
sliceShape, boxesTensorType.getDtype());
Value centers = rewriter.create<Torch::AtenSliceTensorOp>(
loc, sliceTensorType, boxes, const1, const0, const2, const1);
Value sizes = rewriter.create<Torch::AtenSliceTensorOp>(
loc, sliceTensorType, boxes, const1, const2, const4, const1);
Value halfSizes = rewriter.create<Torch::AtenDivScalarOp>(
loc, sizes.getType(), sizes, const2F);
Value x1y1s = rewriter.create<Torch::AtenSubTensorOp>(
loc, centers.getType(), centers, halfSizes, const1);
lpy marked this conversation as resolved.
Show resolved Hide resolved
Value x2y2s = rewriter.create<Torch::AtenAddTensorOp>(
loc, centers.getType(), centers, halfSizes, const1);

Type listElemType = boxesTensorType.getWithSizesAndDtype(
/*optionalSizes=*/std::nullopt,
/*optionalDtype=*/nullptr);
Type listType = Torch::ListType::get(listElemType);
Value tensorList = rewriter.create<Torch::PrimListConstructOp>(
loc, listType, SmallVector<Value>{x1y1s, x2y2s});
boxes = rewriter.create<Torch::AtenCatOp>(loc, boxesTensorType,
tensorList, const1);
}

// TODO: Support score_threshold input
// Filter out the boxes if the score < score_threshold
Expand Down
69 changes: 69 additions & 0 deletions test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -2145,6 +2145,75 @@ func.func @test_nonmaxsuppression_single_box(%arg0: !torch.vtensor<[1,1,4],f32>,
return %0 : !torch.vtensor<[1,3],si64>
}

// CHECK-LABEL: func.func @test_nonmaxsuppression_center_point_box(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[1,1,4],f32>,
// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[1,1,1],f32>,
// CHECK-SAME: %[[VAL_2:.*]]: !torch.vtensor<[1],si64>,
// CHECK-SAME: %[[VAL_3:.*]]: !torch.vtensor<[1],f32>,
// CHECK-SAME: %[[VAL_4:.*]]: !torch.vtensor<[1],f32>) -> !torch.vtensor<[1,3],si64> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
func.func @test_nonmaxsuppression_center_point_box(%arg0: !torch.vtensor<[1,1,4],f32>, %arg1: !torch.vtensor<[1,1,1],f32>, %arg2: !torch.vtensor<[1],si64>, %arg3: !torch.vtensor<[1],f32>, %arg4: !torch.vtensor<[1],f32>) -> !torch.vtensor<[1,3],si64> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[VAL_5:.*]] = torch.constant.int 0
// CHECK: %[[VAL_6:.*]] = torch.constant.int 1
// CHECK: %[[VAL_7:.*]] = torch.aten.size.int %[[VAL_0]], %[[VAL_5]] : !torch.vtensor<[1,1,4],f32>, !torch.int -> !torch.int
// CHECK: %[[VAL_8:.*]] = torch.aten.eq.int %[[VAL_7]], %[[VAL_6]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[VAL_8]], "squeeze operation possible for dim only when input_shape[dim] == 1."
// CHECK: %[[VAL_9:.*]] = torch.aten.squeeze.dim %[[VAL_0]], %[[VAL_5]] : !torch.vtensor<[1,1,4],f32>, !torch.int -> !torch.vtensor<[1,4],f32>
// CHECK: %[[VAL_10:.*]] = torch.constant.int 0
// CHECK: %[[VAL_11:.*]] = torch.constant.int 1
// CHECK: %[[VAL_12:.*]] = torch.aten.size.int %[[VAL_1]], %[[VAL_10]] : !torch.vtensor<[1,1,1],f32>, !torch.int -> !torch.int
// CHECK: %[[VAL_13:.*]] = torch.aten.eq.int %[[VAL_12]], %[[VAL_11]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[VAL_13]], "squeeze operation possible for dim only when input_shape[dim] == 1."
// CHECK: %[[VAL_14:.*]] = torch.aten.squeeze.dim %[[VAL_1]], %[[VAL_10]] : !torch.vtensor<[1,1,1],f32>, !torch.int -> !torch.vtensor<[1,1],f32>
// CHECK: %[[VAL_15:.*]] = torch.constant.int 0
// CHECK: %[[VAL_16:.*]] = torch.constant.int 1
// CHECK: %[[VAL_17:.*]] = torch.aten.size.int %[[VAL_14]], %[[VAL_15]] : !torch.vtensor<[1,1],f32>, !torch.int -> !torch.int
// CHECK: %[[VAL_18:.*]] = torch.aten.eq.int %[[VAL_17]], %[[VAL_16]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[VAL_18]], "squeeze operation possible for dim only when input_shape[dim] == 1."
// CHECK: %[[VAL_19:.*]] = torch.aten.squeeze.dim %[[VAL_14]], %[[VAL_15]] : !torch.vtensor<[1,1],f32>, !torch.int -> !torch.vtensor<[1],f32>
// CHECK: %[[VAL_20:.*]] = torch.constant.int 0
// CHECK: %[[VAL_21:.*]] = torch.constant.int 1
// CHECK: %[[VAL_22:.*]] = torch.constant.int 2
// CHECK: %[[VAL_23:.*]] = torch.constant.int 4
// CHECK: %[[VAL_24:.*]] = torch.constant.float 2.000000e+00
// CHECK: %[[VAL_25:.*]] = torch.aten.slice.Tensor %[[VAL_9]], %[[VAL_21]], %[[VAL_20]], %[[VAL_22]], %[[VAL_21]] : !torch.vtensor<[1,4],f32>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[?,2],f32>
// CHECK: %[[VAL_26:.*]] = torch.aten.slice.Tensor %[[VAL_9]], %[[VAL_21]], %[[VAL_22]], %[[VAL_23]], %[[VAL_21]] : !torch.vtensor<[1,4],f32>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[?,2],f32>
// CHECK: %[[VAL_27:.*]] = torch.aten.div.Scalar %[[VAL_26]], %[[VAL_24]] : !torch.vtensor<[?,2],f32>, !torch.float -> !torch.vtensor<[?,2],f32>
// CHECK: %[[VAL_28:.*]] = torch.aten.sub.Tensor %[[VAL_25]], %[[VAL_27]], %[[VAL_21]] : !torch.vtensor<[?,2],f32>, !torch.vtensor<[?,2],f32>, !torch.int -> !torch.vtensor<[?,2],f32>
// CHECK: %[[VAL_29:.*]] = torch.aten.add.Tensor %[[VAL_25]], %[[VAL_27]], %[[VAL_21]] : !torch.vtensor<[?,2],f32>, !torch.vtensor<[?,2],f32>, !torch.int -> !torch.vtensor<[?,2],f32>
// CHECK: %[[VAL_30:.*]] = torch.prim.ListConstruct %[[VAL_28]], %[[VAL_29]] : (!torch.vtensor<[?,2],f32>, !torch.vtensor<[?,2],f32>) -> !torch.list<vtensor>
// CHECK: %[[VAL_31:.*]] = torch.aten.cat %[[VAL_30]], %[[VAL_21]] : !torch.list<vtensor>, !torch.int -> !torch.vtensor<[1,4],f32>
// CHECK: %[[VAL_32:.*]] = torch.aten.item %[[VAL_4]] : !torch.vtensor<[1],f32> -> !torch.float
// CHECK: %[[VAL_33:.*]] = torch.aten.min %[[VAL_19]] : !torch.vtensor<[1],f32> -> !torch.vtensor<[],f32>
// CHECK: %[[VAL_34:.*]] = torch.aten.item %[[VAL_33]] : !torch.vtensor<[],f32> -> !torch.float
// CHECK: %[[VAL_35:.*]] = torch.aten.ge.float %[[VAL_34]], %[[VAL_32]] : !torch.float, !torch.float -> !torch.bool
// CHECK: torch.runtime.assert %[[VAL_35]], "unimplemented: score_threshold should be <= min(scores)"
// CHECK: %[[VAL_36:.*]] = torch.constant.int 0
// CHECK: %[[VAL_37:.*]] = torch.constant.int 1
// CHECK: %[[VAL_38:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[VAL_39:.*]] = torch.aten.item %[[VAL_3]] : !torch.vtensor<[1],f32> -> !torch.float
// CHECK: %[[VAL_40:.*]] = torch.aten.item %[[VAL_2]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: %[[VAL_41:.*]] = torch.torchvision.nms %[[VAL_31]], %[[VAL_19]], %[[VAL_39]] : !torch.vtensor<[1,4],f32>, !torch.vtensor<[1],f32>, !torch.float -> !torch.vtensor<[?],si64>
// CHECK: %[[VAL_42:.*]] = torch.aten.size.int %[[VAL_41]], %[[VAL_36]] : !torch.vtensor<[?],si64>, !torch.int -> !torch.int
// CHECK: %[[VAL_43:.*]] = torch.aten.gt.int %[[VAL_42]], %[[VAL_40]] : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[VAL_44:.*]] = torch.prim.If %[[VAL_43]] -> (!torch.vtensor<[1],si64>) {
// CHECK: %[[VAL_45:.*]] = torch.aten.slice.Tensor %[[VAL_41]], %[[VAL_36]], %[[VAL_36]], %[[VAL_40]], %[[VAL_37]] : !torch.vtensor<[?],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: torch.prim.If.yield %[[VAL_45]] : !torch.vtensor<[1],si64>
// CHECK: } else {
// CHECK: %[[VAL_46:.*]] = torch.tensor_static_info_cast %[[VAL_41]] : !torch.vtensor<[?],si64> to !torch.vtensor<[1],si64>
// CHECK: torch.prim.If.yield %[[VAL_46]] : !torch.vtensor<[1],si64>
// CHECK: }
// CHECK: %[[VAL_47:.*]] = torch.aten.unsqueeze %[[VAL_44]], %[[VAL_37]] : !torch.vtensor<[1],si64>, !torch.int -> !torch.vtensor<[1,1],si64>
// CHECK: %[[VAL_48:.*]] = torch.aten.size.int %[[VAL_47]], %[[VAL_36]] : !torch.vtensor<[1,1],si64>, !torch.int -> !torch.int
// CHECK: %[[VAL_49:.*]] = torch.constant.int 2
// CHECK: %[[VAL_50:.*]] = torch.prim.ListConstruct %[[VAL_48]], %[[VAL_49]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_51:.*]] = torch.constant.none
// CHECK: %[[VAL_52:.*]] = torch.aten.zeros %[[VAL_50]], %[[VAL_51]], %[[VAL_51]], %[[VAL_51]], %[[VAL_51]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[1,2],si64>
// CHECK: %[[VAL_53:.*]] = torch.prim.ListConstruct %[[VAL_52]], %[[VAL_47]] : (!torch.vtensor<[1,2],si64>, !torch.vtensor<[1,1],si64>) -> !torch.list<vtensor>
// CHECK: %[[VAL_54:.*]] = torch.aten.cat %[[VAL_53]], %[[VAL_37]] : !torch.list<vtensor>, !torch.int -> !torch.vtensor<[1,3],si64>
// CHECK: return %[[VAL_54]] : !torch.vtensor<[1,3],si64>
%0 = torch.operator "onnx.NonMaxSuppression"(%arg0, %arg1, %arg2, %arg3, %arg4) {torch.onnx.center_point_box = 1 : si64} : (!torch.vtensor<[1,1,4],f32>, !torch.vtensor<[1,1,1],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],f32>, !torch.vtensor<[1],f32>) -> !torch.vtensor<[1,3],si64>
return %0 : !torch.vtensor<[1,3],si64>
}
// -----

// CHECK-LABEL: func.func @test_mwm
Expand Down
Loading