forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/main' into dev
- Loading branch information
Showing
46 changed files
with
2,399 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
_base_ = '../_base_/default_runtime.py' | ||
|
||
# data settings | ||
data_preprocessor = dict( | ||
type='MultiModalDataPreprocessor', | ||
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], | ||
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], | ||
to_rgb=False, | ||
) | ||
|
||
test_pipeline = [ | ||
dict(type='Resize', scale=(224, 224), interpolation='bicubic'), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['text'], | ||
meta_keys=['image_id', 'scale_factor'], | ||
), | ||
] | ||
|
||
train_dataloader = None | ||
test_dataloader = dict( | ||
batch_size=32, | ||
num_workers=8, | ||
dataset=dict( | ||
type='CIFAR100', | ||
data_root='data/cifar100', | ||
split='test', | ||
pipeline=test_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
) | ||
test_evaluator = dict(type='Accuracy', topk=(1, 5)) | ||
|
||
# schedule settings | ||
train_cfg = None | ||
val_cfg = None | ||
test_cfg = dict() | ||
|
||
# model settings | ||
model = dict( | ||
type='CLIPZeroShot', | ||
vision_backbone=dict( | ||
type='VisionTransformer', | ||
arch='base', | ||
img_size=224, | ||
patch_size=16, | ||
drop_rate=0., | ||
layer_cfgs=dict(act_cfg=dict(type='QuickGELU')), | ||
pre_norm=True, | ||
), | ||
projection=dict(type='CLIPProjection', in_channels=768, out_channels=512), | ||
text_backbone=dict( | ||
type='CLIPTransformer', | ||
width=512, | ||
layers=12, | ||
heads=8, | ||
attn_mask=True, | ||
), | ||
tokenizer=dict( | ||
type='AutoTokenizer', | ||
name_or_path='openai/clip-vit-base-patch16', | ||
use_fast=False), | ||
vocab_size=49408, | ||
transformer_width=512, | ||
proj_dim=512, | ||
text_prototype='cifar100', | ||
text_prompt='openai_cifar100', | ||
context_length=77, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
_base_ = '../_base_/default_runtime.py' | ||
|
||
# data settings | ||
data_preprocessor = dict( | ||
type='MultiModalDataPreprocessor', | ||
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], | ||
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], | ||
to_rgb=True, | ||
) | ||
|
||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='Resize', scale=(224, 224), interpolation='bicubic'), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['text'], | ||
meta_keys=['image_id', 'scale_factor'], | ||
), | ||
] | ||
|
||
train_dataloader = None | ||
test_dataloader = dict( | ||
batch_size=32, | ||
num_workers=8, | ||
dataset=dict( | ||
type='ImageNet', | ||
data_root='data/imagenet', | ||
split='val', | ||
pipeline=test_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
) | ||
test_evaluator = dict(type='Accuracy', topk=(1, 5)) | ||
|
||
# schedule settings | ||
train_cfg = None | ||
val_cfg = None | ||
test_cfg = dict() | ||
|
||
# model settings | ||
model = dict( | ||
type='CLIPZeroShot', | ||
vision_backbone=dict( | ||
type='VisionTransformer', | ||
arch='base', | ||
img_size=224, | ||
patch_size=16, | ||
drop_rate=0., | ||
layer_cfgs=dict(act_cfg=dict(type='QuickGELU')), | ||
pre_norm=True, | ||
), | ||
projection=dict(type='CLIPProjection', in_channels=768, out_channels=512), | ||
text_backbone=dict( | ||
type='CLIPTransformer', | ||
width=512, | ||
layers=12, | ||
heads=8, | ||
attn_mask=True, | ||
), | ||
tokenizer=dict( | ||
type='AutoTokenizer', | ||
name_or_path='openai/clip-vit-base-patch16', | ||
use_fast=False), | ||
vocab_size=49408, | ||
transformer_width=512, | ||
proj_dim=512, | ||
text_prototype='imagenet', | ||
text_prompt='openai_imagenet_sub', # openai_imagenet, openai_imagenet_sub | ||
context_length=77, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
_base_ = '../_base_/default_runtime.py' | ||
|
||
# data settings | ||
data_preprocessor = dict( | ||
type='MultiModalDataPreprocessor', | ||
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], | ||
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], | ||
to_rgb=False, | ||
) | ||
|
||
test_pipeline = [ | ||
dict(type='Resize', scale=(224, 224), interpolation='bicubic'), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['text'], | ||
meta_keys=['image_id', 'scale_factor'], | ||
), | ||
] | ||
|
||
train_dataloader = None | ||
test_dataloader = dict( | ||
batch_size=32, | ||
num_workers=8, | ||
dataset=dict( | ||
type='CIFAR100', | ||
data_root='data/cifar100', | ||
split='test', | ||
pipeline=test_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
) | ||
test_evaluator = dict(type='Accuracy', topk=(1, 5)) | ||
|
||
# schedule settings | ||
train_cfg = None | ||
val_cfg = None | ||
test_cfg = dict() | ||
|
||
# model settings | ||
model = dict( | ||
type='CLIPZeroShot', | ||
vision_backbone=dict( | ||
type='VisionTransformer', | ||
arch='large', | ||
img_size=224, | ||
patch_size=14, | ||
drop_rate=0., | ||
layer_cfgs=dict(act_cfg=dict(type='QuickGELU')), | ||
pre_norm=True, | ||
), | ||
projection=dict(type='CLIPProjection', in_channels=1024, out_channels=768), | ||
text_backbone=dict( | ||
type='CLIPTransformer', | ||
width=768, | ||
layers=12, | ||
heads=12, | ||
attn_mask=True, | ||
), | ||
tokenizer=dict( | ||
type='AutoTokenizer', | ||
name_or_path='openai/clip-vit-large-patch14', | ||
use_fast=False), | ||
vocab_size=49408, | ||
transformer_width=768, | ||
proj_dim=768, | ||
text_prototype='cifar100', | ||
text_prompt='openai_cifar100', | ||
context_length=77, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
_base_ = '../_base_/default_runtime.py' | ||
|
||
# data settings | ||
data_preprocessor = dict( | ||
type='MultiModalDataPreprocessor', | ||
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], | ||
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], | ||
to_rgb=True, | ||
) | ||
|
||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='Resize', scale=(224, 224), interpolation='bicubic'), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['text'], | ||
meta_keys=['image_id', 'scale_factor'], | ||
), | ||
] | ||
|
||
train_dataloader = None | ||
test_dataloader = dict( | ||
batch_size=32, | ||
num_workers=8, | ||
dataset=dict( | ||
type='ImageNet', | ||
data_root='data/imagenet', | ||
split='val', | ||
pipeline=test_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
) | ||
test_evaluator = dict(type='Accuracy', topk=(1, 5)) | ||
|
||
# schedule settings | ||
train_cfg = None | ||
val_cfg = None | ||
test_cfg = dict() | ||
|
||
# model settings | ||
model = dict( | ||
type='CLIPZeroShot', | ||
vision_backbone=dict( | ||
type='VisionTransformer', | ||
arch='large', | ||
img_size=224, | ||
patch_size=14, | ||
drop_rate=0., | ||
layer_cfgs=dict(act_cfg=dict(type='QuickGELU')), | ||
pre_norm=True, | ||
), | ||
projection=dict(type='CLIPProjection', in_channels=1024, out_channels=768), | ||
text_backbone=dict( | ||
type='CLIPTransformer', | ||
width=768, | ||
layers=12, | ||
heads=12, | ||
attn_mask=True, | ||
), | ||
tokenizer=dict( | ||
type='AutoTokenizer', | ||
name_or_path='openai/clip-vit-large-patch14', | ||
use_fast=False), | ||
vocab_size=49408, | ||
transformer_width=768, | ||
proj_dim=768, | ||
text_prototype='imagenet', | ||
text_prompt='openai_imagenet_sub', # openai_imagenet, openai_imagenet_sub | ||
context_length=77, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.dataset import DefaultSampler | ||
|
||
from mmpretrain.datasets import CIFAR10, PackInputs, RandomCrop, RandomFlip | ||
from mmpretrain.evaluation import Accuracy | ||
|
||
# dataset settings | ||
dataset_type = CIFAR10 | ||
data_preprocessor = dict( | ||
num_classes=10, | ||
# RGB format normalization parameters | ||
mean=[125.307, 122.961, 113.8575], | ||
std=[51.5865, 50.847, 51.255], | ||
# loaded images are already RGB format | ||
to_rgb=False) | ||
|
||
train_pipeline = [ | ||
dict(type=RandomCrop, crop_size=32, padding=4), | ||
dict(type=RandomFlip, prob=0.5, direction='horizontal'), | ||
dict(type=PackInputs), | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type=PackInputs), | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=16, | ||
num_workers=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root='data/cifar10', | ||
split='train', | ||
pipeline=train_pipeline), | ||
sampler=dict(type=DefaultSampler, shuffle=True), | ||
) | ||
|
||
val_dataloader = dict( | ||
batch_size=16, | ||
num_workers=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root='data/cifar10/', | ||
split='test', | ||
pipeline=test_pipeline), | ||
sampler=dict(type=DefaultSampler, shuffle=False), | ||
) | ||
val_evaluator = dict(type=Accuracy, topk=(1, )) | ||
|
||
test_dataloader = val_dataloader | ||
test_evaluator = val_evaluator |
Oops, something went wrong.