Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generalized proofs of [RS17, Cor. 5.6] #147

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
102 changes: 102 additions & 0 deletions src/simplicial-hott/04-right-orthogonal.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -1060,6 +1060,108 @@ of the restriction map `(ψ → A) → (ϕ → A)`.
#end has-unique-extensions
```

### Function types into fiberwise local families are local

We prove that if $A$ is a type and $C : A → U$ is such that every fiber $C (x)$
is local with respect to a subshape inclusion, then so is $(x : X) → A (x)$.
This generalizes the proof of (RS17, Corollary 5.6).

```rzk
#def subshape-restriction
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A : U)
: ( ψ → A) → (ϕ → A)
:= \ f t → f t

#def is-local-function-type-fiberwise-is-local uses (funext)
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A : U)
( C : A → U)
( fiberwise-is-local-C : (x : A) → (is-local-type I ψ ϕ (C x)))
: is-local-type I ψ ϕ ((x : A) → C x)
:=
is-equiv-triple-comp
( ψ → ((x : A) → C x))
( ( x : A) → ψ → C x)
( ( x : A) → ϕ → C x)
( ϕ → ((x : A) → C x))
( \ g x t → g t x) -- first equivalence
( second (flip-ext-fun
( I)
( ψ)
( \ t → BOT)
( A)
( \ t → C)
( \ t → recBOT)))
( \ h x t → h x t) -- second equivalence
( second (equiv-function-equiv-family
( funext)
( A)
( \ x → (ψ → C x))
( \ x → (ϕ → C x))
( \ x → (subshape-restriction I ψ ϕ (C x) , fiberwise-is-local-C x))))
( \ h t x → (h x) t) -- third equivalence
( second (flip-ext-fun-inv
( I)
( \ t → ϕ t)
( \ t → BOT)
( A)
( \ t → C)
( \ t → recBOT)))
```

We can prove the same thing when $X$ is a shape and $C : X → U$ is fiberwise
local.

```rzk
#def is-local-subshape-inclusion-extension-type uses (extext)
( I J : CUBE)
( χ : I → TOPE)
( ψ : J → TOPE)
( ϕ : ψ → TOPE)
( A : χ → U)
( fiberwise-is-local-A : (s : χ) → is-local-type J ψ ϕ (A s))
: is-local-type J ψ ϕ ((s : χ) → A s)
:=
is-equiv-triple-comp
( ψ → (s : χ) → A s)
( ( s : χ) → ψ → A s)
( ( s : χ) → ϕ → A s)
( ϕ → (s : χ) → A s)
( \ g s t → g t s) -- first equivalence
( second
( fubini
( J)
( I)
( \ t → ψ t)
( \ t → BOT)
( χ)
( \ s → BOT)
( \ t s → A s)
( \ u → recBOT)))
( \ h s t → h s t) -- second equivalence
( second (equiv-extensions-equiv extext I χ (\ _ → BOT)
( \ s → ψ → A s)
( \ s → ϕ → A s)
( \ s → (subshape-restriction J ψ ϕ (A s) , fiberwise-is-local-A s))
( \ _ → recBOT)))
( \ h t s → (h s) t) -- third equivalence
( second
( fubini
( I)
( J)
( χ)
( \ s → BOT)
( \ t → ϕ t)
( \ t → BOT)
( \ s t → A s)
( \ u → recBOT)))
```

### Properties of local types / unique extension types

We fix a shape inclusion `ϕ ⊂ ψ`.
Expand Down
80 changes: 18 additions & 62 deletions src/simplicial-hott/05-segal-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -487,7 +487,7 @@ witnesses of the equivalence).
( k (0₂ , 0₂)) (k (1₂ , 0₂)) (k (1₂ , 1₂))
( \ t → k (t , 0₂)) (\ t → k (1₂ , t))
( h)))
, ( is-equiv-projection-contractible-fibers
, ( is-equiv-projection-contractible-fibers
( Λ → A)
( \ k →
Σ ( h : hom A (k (0₂ , 0₂)) (k (1₂ , 1₂)))
Expand Down Expand Up @@ -606,34 +606,14 @@ all $x$ then $(x : X) → A x$ is a Segal type.
( fiberwise-is-segal-A : (x : X) → is-local-horn-inclusion (A x))
: is-local-horn-inclusion ((x : X) → A x)
:=
is-equiv-triple-comp
( Δ² → ((x : X) → A x))
( ( x : X) → Δ² → A x)
( ( x : X) → Λ → A x)
( Λ → ((x : X) → A x))
( \ g x t → g t x) -- first equivalence
( second (flip-ext-fun
( 2 × 2)
( Δ²)
( \ t → BOT)
( X)
( \ t → A)
( \ t → recBOT)))
( \ h x t → h x t) -- second equivalence
( second (equiv-function-equiv-family
( funext)
( X)
( \ x → (Δ² → A x))
( \ x → (Λ → A x))
( \ x → (horn-restriction (A x) , fiberwise-is-segal-A x))))
( \ h t x → (h x) t) -- third equivalence
( second (flip-ext-fun-inv
( 2 × 2)
( Λ)
( \ t → BOT)
( X)
( \ t → A)
( \ t → recBOT)))
is-local-function-type-fiberwise-is-local
( funext)
( 2 × 2)
( Δ²)
( \ t → Λ t)
( X)
( A)
( fiberwise-is-segal-A)

#def is-segal-function-type uses (funext)
( X : U)
Expand All @@ -659,39 +639,15 @@ then $(x : X) → A x$ is a Segal type.
( fiberwise-is-segal-A : (s : ψ) → is-local-horn-inclusion (A s))
: is-local-horn-inclusion ((s : ψ) → A s)
:=
is-equiv-triple-comp
( Δ² → (s : ψ) → A s)
( ( s : ψ) → Δ² → A s)
( ( s : ψ) → Λ → A s)
( Λ → (s : ψ) → A s)
( \ g s t → g t s) -- first equivalence
( second
( fubini
( 2 × 2)
( I)
( Δ²)
( \ t → BOT)
( ψ)
( \ s → BOT)
( \ t s → A s)
( \ u → recBOT)))
( \ h s t → h s t) -- second equivalence
( second (equiv-extensions-equiv extext I ψ (\ _ → BOT)
( \ s → Δ² → A s)
( \ s → Λ → A s)
( \ s → (horn-restriction (A s) , fiberwise-is-segal-A s))
( \ _ → recBOT)))
( \ h t s → (h s) t) -- third equivalence
( second
( fubini
( I)
( 2 × 2)
( ψ)
( \ s → BOT)
( Λ)
( \ t → BOT)
( \ s t → A s)
( \ u → recBOT)))
is-local-subshape-inclusion-extension-type
( extext)
( I)
( 2 × 2)
( ψ)
( Δ²)
( \ t → Λ t)
( A)
( fiberwise-is-segal-A)

#def is-segal-extension-type uses (extext)
( I : CUBE)
Expand Down
Loading