Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Simpler duplicates #171

Merged
merged 5 commits into from
Oct 24, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGES.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ Note that the top-most release is changes in the unreleased master branch on Git
- Added `outcome` property on Result, in order to define a rule outcome based on message levells. #173
### Changed
- Reports rendering. Reports are being generated as HTML with a jinja2 template. `Arche.report_all()` displays the rules results grouped by outcome. The plots are displayed on the "plots" tab. #168
- `report_all()` accepts `uniques` arg to find duplicates among columns/rows, #171


## [0.3.6] (2019-07-12)
Expand Down
293 changes: 1 addition & 292 deletions docs/source/nbs/Rules.ipynb
Original file line number Diff line number Diff line change
@@ -1,292 +1 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Rules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook contains rules used in the library with examples. Some rules executed during `Arche.report_all()`, and some are meant to be executed separately.\n",
"\n",
"Some definitions here are used interchangeably:\n",
"\n",
"* Rule - a test case for data. As a test case, it can be failed, passed or skipped. Some of the rules output only information like [Category fields](#Category-fields)\n",
"\n",
"* **df** - a dataframe which holds input data (from a job, collection or other source)\n",
"\n",
"* Scrapy cloud item - a row in a **df**\n",
"\n",
"* Items fields - columns in a **df**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import arche\n",
"from arche import *\n",
"from arche.readers.items import Items"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"items = Items.from_df(pd.read_csv(\"https://raw.githubusercontent.com/scrapinghub/arche/master/docs/source/nbs/data/items_products_8.csv\"))\n",
"target_items = Items.from_df(pd.read_csv(\"https://raw.githubusercontent.com/scrapinghub/arche/master/docs/source/nbs/data/items_products_7.csv\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = items.df.drop(columns=[\"_type\"])\n",
"target_df = target_items.df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Accessing Graphs Data\n",
"The data is in `stats`. See `Result` class for more details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.coverage.check_fields_coverage(df).stats"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Coverage\n",
"### Fields coverage on input data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.coverage.check_fields_coverage)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.coverage.check_fields_coverage(df).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Anomalies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.coverage.anomalies)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = arche.rules.coverage.anomalies(target=\"381798/2/4\", sample=[\"381798/2/8\", \"381798/2/7\", \"381798/2/6\"])\n",
"res.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Categories"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Category fields"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.category.get_categories)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.category.get_categories(df, max_uniques=200).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Category coverage\n",
"In `report_all()`, these rules use `category` tag."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.category.get_coverage_per_category)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.category.get_coverage_per_category(df, [\"category\"]).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.category.get_difference)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.category.get_difference(df, target_df, [\"category\"]).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compare\n",
"### Fields"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.compare.fields)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.compare.fields(df, target_df, [\"part_number\", \"name\", \"uom\"]).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Duplicates\n",
"### Find duplicates by columns (fields)\n",
"This rule is not included in `Arche.report_all()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(arche.rules.duplicates.find_by)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arche.rules.duplicates.find_by(df, [\"name\", \"part_number\"]).show(short=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
{"cells":[{"cell_type":"markdown","metadata":{},"outputs":[],"source":["# Rules"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["This notebook contains rules used in the library with examples. Some rules executed during `Arche.report_all()`, and some are meant to be executed separately.\n","\n","Some definitions here are used interchangeably:\n","\n","* Rule - a test case for data. As a test case, it can be failed, passed or skipped. Some of the rules output only information like [Category fields](#Category-fields)\n","\n","* **df** - a dataframe which holds input data (from a job, collection or other source)\n","\n","* Scrapy cloud item - a row in a **df**\n","\n","* Items fields - columns in a **df**"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[],"source":"import arche\nfrom arche import *\nfrom arche.readers.items import Items"},{"cell_type":"code","execution_count":2,"metadata":{},"outputs":[],"source":["items = Items.from_df(pd.read_csv(\"https://raw.githubusercontent.com/scrapinghub/arche/master/docs/source/nbs/data/items_products_8.csv\"))\n","target_items = Items.from_df(pd.read_csv(\"https://raw.githubusercontent.com/scrapinghub/arche/master/docs/source/nbs/data/items_products_7.csv\"))"]},{"cell_type":"code","execution_count":4,"metadata":{},"outputs":[],"source":["df = items.df.drop(columns=[\"_type\"])\n","target_df = target_items.df"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["## Accessing Graphs Data\n","The data is in `stats`. See `Result` class for more details."]},{"cell_type":"code","execution_count":11,"metadata":{},"outputs":[],"source":["arche.rules.coverage.check_fields_coverage(df).stats"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["## Coverage\n","### Fields coverage on input data"]},{"cell_type":"code","execution_count":12,"metadata":{},"outputs":[],"source":["help(arche.rules.coverage.check_fields_coverage)"]},{"cell_type":"code","execution_count":13,"metadata":{},"outputs":[],"source":["arche.rules.coverage.check_fields_coverage(df).show()"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["### Anomalies"]},{"cell_type":"code","execution_count":14,"metadata":{},"outputs":[],"source":["help(arche.rules.coverage.anomalies)"]},{"cell_type":"code","execution_count":15,"metadata":{},"outputs":[],"source":["res = arche.rules.coverage.anomalies(target=\"381798/2/4\", sample=[\"381798/2/8\", \"381798/2/7\", \"381798/2/6\"])\n","res.show()"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["## Categories"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["### Category fields"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["help(arche.rules.category.get_categories)"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["arche.rules.category.get_categories(df, max_uniques=200).show()"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["### Category coverage\n","In `report_all()`, these rules use `category` tag."]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["help(arche.rules.category.get_coverage_per_category)"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["arche.rules.category.get_coverage_per_category(df, [\"category\"]).show()"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["help(arche.rules.category.get_difference)"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["arche.rules.category.get_difference(df, target_df, [\"category\"]).show()"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":["## Compare\n","### Fields"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["help(arche.rules.compare.fields)"]},{"cell_type":"code","execution_count":0,"metadata":{},"outputs":[],"source":["arche.rules.compare.fields(df, target_df, [\"part_number\", \"name\", \"uom\"]).show()"]},{"cell_type":"markdown","metadata":{},"outputs":[],"source":"## Duplicates\n### Find duplicates by any combination of columns (fields)\nThis rule is executed when `uniques` is passed to `Arche.report_all()`."},{"cell_type":"code","execution_count":5,"metadata":{},"outputs":[],"source":["help(arche.rules.duplicates.find_by)"]},{"cell_type":"code","execution_count":8,"metadata":{},"outputs":[],"source":["arche.rules.duplicates.find_by(df, [\"uom\", [\"name\", \"part_number\"]]).show(short=True)"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[],"source":""}],"nbformat":4,"nbformat_minor":2,"metadata":{"language_info":{"name":"python","codemirror_mode":{"name":"ipython","version":3}},"orig_nbformat":2,"file_extension":".py","mimetype":"text/x-python","name":"python","npconvert_exporter":"python","pygments_lexer":"ipython3","version":3}}
23 changes: 17 additions & 6 deletions src/arche/arche.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from functools import lru_cache
import logging
from typing import Iterable, Optional, Union, cast
from typing import Iterable, List, Optional, Union, cast

from arche.data_quality_report import DataQualityReport
from arche.readers.items import Items, CollectionItems, JobItems, RawItems
Expand Down Expand Up @@ -124,12 +124,21 @@ def get_items(
def save_result(self, rule_result):
self.report.save(rule_result)

def report_all(self, short: bool = False) -> None:
def report_all(
self, short: bool = False, uniques: List[Union[str, List[str]]] = None
) -> None:
"""Report on all included rules.

Args:
uniques: see `arche.rules.duplicates.find_by`
"""
if uniques:
self.uniques = uniques
self.run_all_rules()
IPython.display.clear_output()
self.report(keys_limit=10 if short else None)

def run_all_rules(self):
def run_all_rules(self) -> None:
if isinstance(self.source_items, JobItems):
self.check_metadata(self.source_items.job)
if self.target_items:
Expand All @@ -146,7 +155,6 @@ def data_quality_report(self, bucket: Optional[str] = None):
IPython.display.clear_output()
DataQualityReport(self.source_items, self.schema, self.report, bucket)

@lru_cache(maxsize=32)
def run_general_rules(self):
self.save_result(garbage_symbols(self.source_items.df))
df = self.source_items.df
Expand All @@ -156,6 +164,10 @@ def run_general_rules(self):
)
)
self.save_result(category_rules.get_categories(df))
if getattr(self, "uniques", None):
self.save_result(
duplicate_rules.find_by(self.source_items.df, self.uniques)
)

def validate_with_json_schema(self) -> None:
"""Run JSON schema check and output results. It will try to find all errors, but
Expand Down Expand Up @@ -208,8 +220,7 @@ def run_schema_rules(self) -> None:

def run_customized_rules(self, items, tagged_fields):
self.save_result(price_rules.compare_was_now(items.df, tagged_fields))
self.save_result(duplicate_rules.find_by_unique(items.df, tagged_fields))
self.save_result(duplicate_rules.find_by_name_url(items.df, tagged_fields))
self.save_result(duplicate_rules.find_by_tags(items.df, tagged_fields))
self.save_result(
category_rules.get_coverage_per_category(
items.df, tagged_fields.get("category", []) + self.schema.enums
Expand Down
Loading